Statistics on Special Manifolds
Resource Information
The work Statistics on Special Manifolds represents a distinct intellectual or artistic creation found in University of Oklahoma Libraries. This resource is a combination of several types including: Work, Language Material, Books.
The Resource
Statistics on Special Manifolds
Resource Information
The work Statistics on Special Manifolds represents a distinct intellectual or artistic creation found in University of Oklahoma Libraries. This resource is a combination of several types including: Work, Language Material, Books.
 Label
 Statistics on Special Manifolds
 Statement of responsibility
 by Yasuko Chikuse
 Subject

 Teoria assintótica (inferência estatística)
 Statistique mathématique
 Statistics
 Statistics
 StiefelMannigfaltigkeit
 Electronic books
 Variétés (Mathématiques)
 Mathematical statistics
 Statistik
 Estimação de densidades
 Manifolds
 Stiefelsche Mannigfaltigkeit
 Análise multivariada
 GraßmannMannigfaltigkeit
 Mathematical statistics
 Language
 eng
 Summary
 This book is concerned with statistical analysis on the two special manifolds, the Stiefel manifold and the Grassmann manifold, treated as statistical sample spaces consisting of matrices. The former is represented by the set of m x k matrices whose columns are mutually orthogonal kvariate vectors of unit length, and the latter by the set of m x m orthogonal projection matrices idempotent of rank k. The observations for the special case k=1 are regarded as directed vectors on a unit hypersphere and as axes or lines undirected, respectively. Statistical analysis on these manifolds is required, especially for low dimensions in practical applications, in the earth (or geological) sciences, astronomy, medicine, biology, meteorology, animal behavior and many other fields. The Grassmann manifold is a rather new subject treated as a statistical sample space, and the development of statistical analysis on the manifold must make some contributions to the related sciences. The reader may already know the usual theory of multivariate analysis on the real Euclidean space and intend to deeper or broaden the research area to statistics on special manifolds, which is not treated in general textbooks of multivariate analysis. The author rather concentrates on the topics to which a considerable amount of personal effort has been devoted. Starting with fundamental material of the special manifolds and some knowledge in multivariate analysis, the book discusses population distributions (especially the matrix Langevin distributions that are used for the most of the statistical analyses in this book), decompositions of the special manifolds, sampling distributions, and statistical inference on the parameters (estimation and tests for hypotheses). Asymptotic theory in sampling distributions and statistical inference is developed for large sample size, for large concentration and for high dimension. Further investigated are Procrustes methods applied on the special manifolds, density estimation, and measurement of orthogonal association. This book is designed as a reference book for both theoretical and applied statisticians. The book will also be used as a textbook for a graduate course in multivariate analysis. It may be assumed that the reader is familiar with the usual theory of univariate statistics and a thorough background in mathematics, in particular, knowledge of multivariate calculation techniques. To make the book selfcontained, a brief review of some of those aspects and related topics is given. Yasuko Chikuse is Professor of Statistics and Mathematics at Kagawa University, Japan. She earned a Ph. D. in Statistics from Yale University and Sc. D. in Mathematics from Kyushu University, Japan. She is a member of the International Statistical Institute, the Institute of Mathematical Statistics, the American Statistical Association, the Japan Statistical Society, and the Mathematical Society of Japan. She has held visiting research and/or teaching appointments at the CSIRO, the University of Pittsburgh, the University of California at Santa Barbara, York University, McGill University, and the University of St Andrews
 Cataloging source
 AU@
 Dewey number
 519.5
 Index
 no index present
 LC call number
 QA276280
 Literary form
 non fiction
 Nature of contents
 dictionaries
 Series statement
 Lecture Notes in Statistics,
 Series volume
 174
Context
Context of Statistics on Special ManifoldsEmbed (Experimental)
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.libraries.ou.edu/resource/Zp0y2SQiyuw/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.libraries.ou.edu/resource/Zp0y2SQiyuw/">Statistics on Special Manifolds</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.libraries.ou.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.libraries.ou.edu/">University of Oklahoma Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data  Experimental
Data Citation of the Work Statistics on Special Manifolds
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.libraries.ou.edu/resource/Zp0y2SQiyuw/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.libraries.ou.edu/resource/Zp0y2SQiyuw/">Statistics on Special Manifolds</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.libraries.ou.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.libraries.ou.edu/">University of Oklahoma Libraries</a></span></span></span></span></div>