Computational Invariant Theory
Resource Information
The work Computational Invariant Theory represents a distinct intellectual or artistic creation found in University of Oklahoma Libraries. This resource is a combination of several types including: Work, Language Material, Books.
The Resource
Computational Invariant Theory
Resource Information
The work Computational Invariant Theory represents a distinct intellectual or artistic creation found in University of Oklahoma Libraries. This resource is a combination of several types including: Work, Language Material, Books.
 Label
 Computational Invariant Theory
 Statement of responsibility
 by Harm Derksen, Gregor Kemper
 Language

 eng
 eng
 Summary
 This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be of more than passing interest. More than ten years after the first publication of the book, the second edition now provides a major update and covers many recent developments in the field. Among the roughly 100 added pages there are two appendices, authored by Vladimir Popov, and an addendum by Norbert A'Campo and Vladimir Popov.
 Dewey number
 510
 http://bibfra.me/vocab/relation/httpidlocgovvocabularyrelatorsaut

 O6YpU24owoM
 GriuSaXE8OM
 Language note
 English
 LC call number

 QA252.3
 QA387
 Literary form
 non fiction
 Nature of contents
 dictionaries
 Series statement
 Encyclopaedia of Mathematical Sciences,
Context
Context of Computational Invariant TheoryEmbed (Experimental)
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.libraries.ou.edu/resource/PvxPDsDLGvo/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.libraries.ou.edu/resource/PvxPDsDLGvo/">Computational Invariant Theory</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.libraries.ou.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.libraries.ou.edu/">University of Oklahoma Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data  Experimental
Data Citation of the Work Computational Invariant Theory
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa faexternallinksquare fafw"></i> Data from <span resource="http://link.libraries.ou.edu/resource/PvxPDsDLGvo/" typeof="CreativeWork http://bibfra.me/vocab/lite/Work"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.libraries.ou.edu/resource/PvxPDsDLGvo/">Computational Invariant Theory</a></span>  <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.libraries.ou.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.libraries.ou.edu/">University of Oklahoma Libraries</a></span></span></span></span></div>