#
Category theory; homological algebra -- Categories with structure | Enriched categories (over closed or monoidal categories)
Resource Information
The concept ** Category theory; homological algebra -- Categories with structure | Enriched categories (over closed or monoidal categories)** represents the subject, aboutness, idea or notion of resources found in **University of Oklahoma Libraries**.

The Resource
Category theory; homological algebra -- Categories with structure | Enriched categories (over closed or monoidal categories)
Resource Information

The concept

**Category theory; homological algebra -- Categories with structure | Enriched categories (over closed or monoidal categories)**represents the subject, aboutness, idea or notion of resources found in**University of Oklahoma Libraries**.- Label
- Category theory; homological algebra -- Categories with structure | Enriched categories (over closed or monoidal categories)

- Source
- msc

## Context

Context of Category theory; homological algebra -- Categories with structure | Enriched categories (over closed or monoidal categories)#### Subject of

## Embed

### Settings

Select options that apply then copy and paste the RDF/HTML data fragment to include in your application

Embed this data in a secure (HTTPS) page:

Layout options:

Include data citation:

<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.libraries.ou.edu/resource/LxO7pMOnv_w/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.libraries.ou.edu/resource/LxO7pMOnv_w/">Category theory; homological algebra -- Categories with structure | Enriched categories (over closed or monoidal categories)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.libraries.ou.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.libraries.ou.edu/">University of Oklahoma Libraries</a></span></span></span></span></div>

Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements

### Preview

## Cite Data - Experimental

### Data Citation of the Concept Category theory; homological algebra -- Categories with structure | Enriched categories (over closed or monoidal categories)

Copy and paste the following RDF/HTML data fragment to cite this resource

`<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.libraries.ou.edu/resource/LxO7pMOnv_w/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.libraries.ou.edu/resource/LxO7pMOnv_w/">Category theory; homological algebra -- Categories with structure | Enriched categories (over closed or monoidal categories)</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.libraries.ou.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.libraries.ou.edu/">University of Oklahoma Libraries</a></span></span></span></span></div>`