The Resource Vehicle safety communications : protocols, security, and privacy, Luca Delgrossi, Tao Zhang

Vehicle safety communications : protocols, security, and privacy, Luca Delgrossi, Tao Zhang

Label
Vehicle safety communications : protocols, security, and privacy
Title
Vehicle safety communications
Title remainder
protocols, security, and privacy
Statement of responsibility
Luca Delgrossi, Tao Zhang
Creator
Contributor
Author
Subject
Genre
Language
eng
Summary
  • "Owing to their safety applications, cooperative vehicle systems, which use sensors and wireless technologies to reduce traffic accidents, continue to be the focus of heavy research and development efforts around the world. Written by industry professionals, this book provides a systematic description of cooperative vehicle systems, discussing key technical issues in such systems, the latest advances in enabling technologies, and cutting-edge research trends. Coverage includes important technologies such as 5.9 GHz Dedicated Short Range Communications (DSRC), on-board equipment (OBE), and roadside equipment (RSE)"--
  • "Provides an up-to-date, in-depth look at current crucial issues in the research community, automotive industry, and government agencies around the world"--
Member of
Additional physical form
Also available in print.
Assigning source
  • Provided by publisher
  • Provided by publisher
Cataloging source
CaBNVSL
http://library.link/vocab/creatorName
Delgrossi, Luca
Dewey number
629.276
Illustrations
illustrations
Index
index present
LC call number
TE228.37
LC item number
.D45 2012eb
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorDate
1962-
http://library.link/vocab/relatedWorkOrContributorName
Zhang, Tao
Series statement
Information and communication technology series
Series volume
103
http://library.link/vocab/subjectName
  • Vehicular ad hoc networks (Computer networks)
  • Automobiles
  • Automobiles
Label
Vehicle safety communications : protocols, security, and privacy, Luca Delgrossi, Tao Zhang
Instantiates
Publication
Distribution
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier MARC source
rdacarrier
Content category
text
Content type MARC source
rdacontent
Contents
  • -- Foreword xv / Ralf G. Herrtwich -- Foreword xvii / Flavio Bonomi -- Foreword xix / Adam Drobot -- Preface xxi -- Acknowledgments xxv -- 1 Traffic Safety 1 -- 1.1 Traffic Safety Facts 1 -- 1.1.1 Fatalities 2 -- 1.1.2 Leading Causes of Crashes 3 -- 1.1.3 Current Trends 5 -- 1.2 European Union 5 -- 1.3 Japan 7 -- 1.4 Developing Countries 7 -- References 8 -- 2 Automotive Safety Evolution 10 -- 2.1 Passive Safety 10 -- 2.1.1 Safety Cage and the Birth of Passive Safety 10 -- 2.1.2 Seat Belts 11 -- 2.1.3 Air Bags 11 -- 2.2 Active Safety 12 -- 2.2.1 Antilock Braking System 12 -- 2.2.2 Electronic Stability Control 13 -- 2.2.3 Brake Assist 13 -- 2.3 Advanced Driver Assistance Systems 14 -- 2.3.1 Adaptive Cruise Control 15 -- 2.3.2 Blind Spot Assist 16 -- 2.3.3 Attention Assist 16 -- 2.3.4 Precrash Systems 16 -- 2.4 Cooperative Safety 17 -- References 18 -- 3 Vehicle Architectures 20 -- 3.1 Electronic Control Units 20 -- 3.2 Vehicle Sensors 21 -- 3.2.1 Radars 21 -- 3.2.2 Cameras 21 -- 3.3 Onboard Communication Networks 22 -- 3.3.1 Controller Area Network 23 -- 3.3.2 Local Interconnect Network 23 -- 3.3.3 FlexRay 24 -- 3.3.4 Media Oriented Systems Transport 24 -- 3.3.5 Onboard Diagnostics 24 -- 3.4 Vehicle Data 25 -- 3.5 Vehicle Data Security 26 -- 3.6 Vehicle Positioning 27 -- 3.6.1 Global Positioning System 27 -- 3.6.2 Galileo 29 -- 3.6.3 Global Navigation Satellite System 29 -- 3.6.4 Positioning Accuracy 30 -- References 30 -- 4 Connected Vehicles 32 -- 4.1 Connected Vehicle Applications 32 -- 4.1.1 Hard Safety Applications 32 -- 4.1.2 Soft Safety Applications 33 -- 4.1.3 Mobility and Convenience Applications 33 -- 4.2 Uniqueness in Consumer Vehicle Networks 34 -- 4.3 Vehicle Communication Modes 36 -- 4.3.1 Vehicle-to-Vehicle Local Broadcast 36 -- 4.3.2 V2V Multihop Message Dissemination 37 -- 4.3.3 Infrastructure-to-Vehicle Local Broadcast 38 -- 4.3.4 Vehicle-to-Infrastructure Bidirectional Communications 39 -- 4.4 Wireless Communications Technology for Vehicles 39 -- References 42
  • 5 Dedicated Short-Range Communications 44 -- 5.1 The 5.9 GHz Spectrum 44 -- 5.1.1 DSRC Frequency Band Usage 45 -- 5.1.2 DSRC Channels 45 -- 5.1.3 DSRC Operations 46 -- 5.2 DSRC in the European Union 46 -- 5.3 DSRC in Japan 47 -- 5.4 DSRC Standards 48 -- 5.4.1 Wireless Access in Vehicular Environments 48 -- 5.4.2 Wireless Access in Vehicular Environments Protocol Stack 48 -- 5.4.3 International Harmonization 50 -- References 50 -- 6 WAVE Physical Layer 52 -- 6.1 Physical Layer Operations 52 -- 6.1.1 Orthogonal Frequency Division Multiplexing 52 -- 6.1.2 Modulation and Coding Rates 53 -- 6.1.3 Frame Reception 54 -- 6.2 PHY Amendments 55 -- 6.2.1 Channel Width 56 -- 6.2.2 Spectrum Masks 56 -- 6.2.3 Improved Receiver Performance 57 -- 6.3 PHY Layer Modeling 57 -- 6.3.1 Network Simulator Architecture 58 -- 6.3.2 RF Model 59 -- 6.3.3 Wireless PHY 61 -- References 62 -- 7 WAVE Media Access Control Layer 64 -- 7.1 Media Access Control Layer Operations 64 -- 7.1.1 Carrier Sensing Multiple Access with Collision Avoidance 64 -- 7.1.2 Hidden Terminal Effects 65 -- 7.1.3 Basic Service Set 66 -- 7.2 MAC Layer Amendments 66 -- 7.3 MAC Layer Modeling 67 -- 7.3.1 Transmission 68 -- 7.3.2 Reception 68 -- 7.3.3 Channel State Manager 68 -- 7.3.4 Back-Off Manager 69 -- 7.3.5 Transmission Coordination 70 -- 7.3.6 Reception Coordination 71 -- 7.4 Overhauled ns-2 Implementation 72 -- References 74 -- 8 DSRC Data Rates 75 -- 8.1 Introduction 75 -- 8.2 Communication Density 76 -- 8.2.1 Simulation Study 77 -- 8.2.2 Broadcast Reception Rates 78 -- 8.2.3 Channel Access Delay 81 -- 8.2.4 Frames Reception Failures 83 -- 8.3 Optimal Data Rate 85 -- 8.3.1 Modulation and Coding Rates 85 -- 8.3.2 Simulation Study 86 -- 8.3.3 Simulation Matrix 87 -- 8.3.4 Simulation Results 88 -- References 91 -- 9 WAVE Upper Layers 93 -- 9.1 Introduction 93 -- 9.2 DSRC Multichannel Operations 94 -- 9.2.1 Time Synchronization 94 -- 9.2.2 Synchronization Intervals 95 -- 9.2.3 Guard Intervals 96 -- 9.2.4 Channel Switching 96
  • 9.2.5 Channel Switching State Machine 96 -- 9.3 Protocol Evaluation 97 -- 9.3.1 Simulation Study 98 -- 9.3.2 Simulation Scenarios 99 -- 9.3.3 Simulation Results 99 -- 9.3.4 Protocol Enhancements 102 -- 9.4 WAVE Short Message Protocol 103 -- References 104 -- 10 Vehicle-to-Infrastructure Safety Applications 106 -- 10.1 Intersection Crashes 106 -- 10.2 Cooperative Intersection Collision Avoidance System for Violations 107 -- 10.2.1 CICAS-V Design 107 -- 10.2.2 CICAS-V Development 110 -- 10.2.3 CICAS-V Testing 116 -- 10.3 Integrated Safety Demonstration 118 -- 10.3.1 Demonstration Concept 118 -- 10.3.2 Hardware Components 120 -- 10.3.3 Demo Design 121 -- References 124 -- 11 Vehicle-to-Vehicle Safety Applications 126 -- 11.1 Cooperation among Vehicles 126 -- 11.2 V2V Safety Applications 127 -- 11.3 V2V Safety Applications Design 128 -- 11.3.1 Basic Safety Messages 129 -- 11.3.2 Minimum Performance Requirements 129 -- 11.3.3 Target Classifi cation 131 -- 11.3.4 Vehicle Representation 132 -- 11.3.5 Sample Applications 133 -- 11.4 System Implementation 135 -- 11.4.1 Onboard Unit Hardware Components 135 -- 11.4.2 OBU Software Architecture 135 -- 11.4.3 Driver / Vehicle Interface 137 -- 11.5 System Testing 138 -- 11.5.1 Communications Coverage and Antenna Considerations 138 -- 11.5.2 Positioning 139 -- References 140 -- 12 DSRC Scalability 141 -- 12.1 Introduction 141 -- 12.2 DSRC Data Traffic 142 -- 12.2.1 DSRC Safety Messages 142 -- 12.2.2 Transmission Parameters 143 -- 12.2.3 Channel Load Assessment 144 -- 12.3 Congestion Control Algorithms 145 -- 12.3.1 Desired Properties 145 -- 12.3.2 Transmission Power Adjustment 146 -- 12.3.3 Message Rate Adjustment 147 -- 12.3.4 Simulation Study 148 -- 12.4 Conclusions 148 -- References 149 -- 13 Security and Privacy Threats and Requirements 151 -- 13.1 Introduction 151 -- 13.2 Adversaries 151 -- 13.3 Security Threats 152 -- 13.3.1 Send False Safety Messages Using Valid Security Credentials 152 -- 13.3.2 Falsely Accuse Innocent Vehicles 153
  • 13.3.3 Impersonate Vehicles or Other Network Entities 153 -- 13.3.4 Denial-of-Service Attacks Specific to Consumer Vehicle Networks 154 -- 13.3.5 Compromise OBU Software or Firmware 155 -- 13.4 Privacy Threats 155 -- 13.4.1 Privacy in a Vehicle Network 155 -- 13.4.2 Privacy Threats in Consumer Vehicle Networks 156 -- 13.4.3 How Driver Privacy can be Breached Today 158 -- 13.5 Basic Security Capabilities 159 -- 13.5.1 Authentication 159 -- 13.5.2 Misbehavior Detection and Revocation 160 -- 13.5.3 Data Integrity 160 -- 13.5.4 Data Confidentiality 160 -- 13.6 Privacy Protections Capabilities 161 -- 13.7 Design and Performance Considerations 161 -- 13.7.1 Scalability 162 -- 13.7.2 Balancing Competing Requirements 162 -- 13.7.3 Minimal Side Effects 163 -- 13.7.4 Quantifi able Levels of Security and Privacy 163 -- 13.7.5 Adaptability 163 -- 13.7.6 Security and Privacy Protection for V2V Broadcast 163 -- 13.7.7 Security and Privacy Protection for Communications with Security Servers 164 -- References 165 -- 14 Cryptographic Mechanisms 167 -- 14.1 Introduction 167 -- 14.2 Categories of Cryptographic Mechanisms 167 -- 14.2.1 Cryptographic Hash Functions 168 -- 14.2.2 Symmetric Key Algorithms 169 -- 14.2.3 Public Key (Asymmetric Key) Algorithms 170 -- 14.3 Digital Signature Algorithms 172 -- 14.3.1 The RSA Algorithm 172 -- 14.3.2 The DSA Algorithm 178 -- 14.3.3 The ECDSA Algorithm 184 -- 14.3.4 ECDSA for Vehicle Safety Communications 194 -- 14.4 Message Authentication and Message Integrity Verifi cation 196 -- 14.4.1 Authentication and Integrity Verifi cation Using Hash Functions 197 -- 14.4.2 Authentication and Integrity Verifi cation Using Digital Signatures 198 -- 14.5 Diffi e / Hellman Key Establishment Protocol 200 -- 14.5.1 The Original Diffie / Hellman Key Establishment Protocol 200 -- 14.5.2 Elliptic Curve Diffie / Hellman Key Establishment Protocol 201 -- 14.6 Elliptic Curve Integrated Encryption Scheme (ECIES) 202 -- 14.6.1 The Basic Idea 202 -- 14.6.2 Scheme Setup 202
  • 14.6.3 Encrypt a Message 202 -- 14.6.4 Decrypt a Message 204 -- 14.6.5 Performance 204 -- References 206 -- 15 Public Key Infrastructure for Vehicle Networks 209 -- 15.1 Introduction 209 -- 15.2 Public Key Certificates 210 -- 15.3 Message Authentication with Certificates 211 -- 15.4 Certifi cate Revocation List 212 -- 15.5 A Baseline Reference Vehicular PKI Model 213 -- 15.6 Confi gure Initial Security Parameters and Assign Initial Certificates 215 -- 15.6.1 Vehicles Create Their Private and Public Keys 216 -- 15.6.2 Certificate Authority Creates Private and Public Keys for Vehicles 217 -- 15.7 Acquire New Keys and Certifi cates 217 -- 15.8 Distribute Certifi cates to Vehicles for Signature Verifications 220 -- 15.9 Detect Misused Certifi cates and Misbehaving Vehicles 222 -- 15.9.1 Local Misbehavior Detection 223 -- 15.9.2 Global Misbehavior Detection 224 -- 15.9.3 Misbehavior Reporting 224 -- 15.10 Ways for Vehicles to Acquire CRLs 226 -- 15.11 How Often CRLs should be Distributed to Vehicles? 228 -- 15.12 PKI Hierarchy 230 -- 15.12.1 Certifi cate Chaining to Enable Hierarchical CAs 231 -- 15.12.2 Hierarchical CA Architecture Example 231 -- 15.13 Privacy-Preserving Vehicular PKI 233 -- 15.13.1 Quantitative Measurements of Vehicle Anonymity 234 -- 15.13.2 Quantitative Measurement of Message Unlinkability 234 -- References 235 -- 16 Privacy Protection with Shared Certificates 237 -- 16.1 Shared Certificates 237 -- 16.2 The Combinatorial Certificate Scheme 237 -- 16.3 Certificate Revocation Collateral Damage 239 -- 16.4 Certified Intervals 242 -- 16.4.1 The Concept of Certified Interval 242 -- 16.4.2 Certified Interval Produced by the Original Combinatorial Certificate Scheme 242 -- 16.5 Reduce Collateral Damage and Improve Certified Interval 244 -- 16.5.1 Reduce Collateral Damage Caused by a Single Misused Certificate 245 -- 16.5.2 Vehicles Become Statistically Distinguishable When Misusing Multiple Certificates 248 -- 16.5.3 The Dynamic Reward Algorithm 250 -- 16.6 Privacy in Low Vehicle Density Areas 253
  • 16.6.1 The Problem 253 -- 16.6.2 The Blend-In Algorithm to Improve Privacy 256 -- References 259 -- 17 Privacy Protection with Short-Lived Unique Certificates 260 -- 17.1 Short-Lived Unique Certificates 260 -- 17.2 The Basic Short-Lived Certificate Scheme 261 -- 17.3 The Problem of Large CRL 263 -- 17.4 Anonymously Linked Certificates to Reduce CRL Size 264 -- 17.4.1 Certificate Tags 264 -- 17.4.2 CRL Processing by Vehicles 265 -- 17.4.3 Backward Unlinkability 267 -- 17.5 Reduce CRL Search Time 268 -- 17.6 Unlinked Short-Lived Certificates 269 -- 17.7 Reduce the Volume of Certificate Request and Response Messages 270 -- 17.8 Determine the Number of Certificates for Each Vehicle 270 -- References 273 -- 18 Privacy Protection with Group Signatures 274 -- 18.1 Group Signatures 274 -- 18.2 Zero-Knowledge Proof of Knowledge 275 -- 18.3 The ACJT Group Signature Scheme and its Extensions 277 -- 18.3.1 The ACJT Group Signature Scheme 277 -- 18.3.2 The Challenge of Group Membership Revocation 282 -- 18.3.3 ACJT Extensions to Support Membership Revocation 283 -- 18.4 The CG Group Signature Scheme with Revocation 286 -- 18.5 The Short Group Signatures Scheme 288 -- 18.5.1 The Short Group Signatures Scheme 288 -- 18.5.2 Membership Revocation 291 -- 18.6 Group Signature Schemes with Verifier-Local Revocation 292 -- References 293 -- 19 Privacy Protection against Certificate Authorities 295 -- 19.1 Introduction 295 -- 19.2 Basic Idea 295 -- 19.3 Baseline Split CA Architecture, Protocol, and Message Processing 297 -- 19.4 Split CA Architecture for Shared Certifi cates 301 -- 19.5 Split CA Architecture for Unlinked Short-Lived Certificates 302 -- 19.5.1 Acquire One Unlinked Certifi cate at a Time 302 -- 19.5.2 Assign Batches of Unlinked Short-Lived Certifi cates 304 -- 19.5.3 Revoke Batches of Unlinked Certifi cates 306 -- 19.5.4 Request for Decryption Keys for Certificate Batches 307 -- 19.6 Split CA Architecture for Anonymously Linked Short-Lived Certificates 308 -- 19.6.1 Assign One Anonymously Linked Short-Lived Certificate at a Time 308
  • 19.6.2 Assign Batches of Anonymously Linked Short-Lived Certificates 311 -- 19.6.3 Revoke Batches of Anonymously Linked Short-Lived Certificates 312 -- 19.6.4 Request for Decryption Keys for Certificate Batches 313 -- References 314 -- 20 Comparison of Privacy-Preserving Certificate Management Schemes 315 -- 20.1 Introduction 315 -- 20.2 Comparison of Main Characteristics 316 -- 20.3 Misbehavior Detection 320 -- 20.4 Abilities to Prevent Privacy Abuse by CA and MDS Operators 321 -- 20.5 Summary 322 -- 21 IEEE 1609.2 Security Services 323 -- 21.1 Introduction 323 -- 21.2 The IEEE 1609.2 Standard 323 -- 21.3 Certificates and Certificate Authority Hierarchy 325 -- 21.4 Formats for Public Key, Signature, Certificate, and CRL 327 -- 21.4.1 Public Key Formats 327 -- 21.4.2 Signature Formats 328 -- 21.4.3 Certificate Format 329 -- 21.4.4 CRL Format 332 -- 21.5 Message Formats and Processing for Generating Encrypted Messages 333 -- 21.6 Sending Messages 335 -- 21.7 Request Certifi cates from the CA 336 -- 21.8 Request and Processing CRL 343 -- 21.9 What the Current IEEE 1609.2 Standard Does Not Cover 344 -- 21.9.1 No Support for Anonymous Message Authentication 344 -- 21.9.2 Separate Vehicle-CA Communication Protocols Are Required 344 -- 21.9.3 Interactions and Interfaces between CA Entities Not Addressed / 346 -- References 346 -- 22 4G for Vehicle Safety Communications 347 -- 22.1 Introduction 347 -- 22.2 Long-Term Revolution (LTE) 347 -- 22.3 LTE for Vehicle Safety Communications/ 353 -- 22.3.1 Issues to Be Addressed 353 -- 22.3.2 LTE for V2I Safety Communications 353 -- 22.3.3 LTE for V2V Safety Communications 356 -- 22.3.4 LTE Broadcast and Multicast Services 357 -- References 358 -- Glossary 360 -- Index 367
Dimensions
unknown
Extent
1 online resource (400 p.)
Form of item
online
Governing access note
Restricted to subscribers or individual electronic text purchasers
Isbn
9781118452196
Media category
computer
Media MARC source
rdamedia
Other control number
10.1002/9781118452189
Specific material designation
remote
System control number
  • (CKB)2670000000246196
  • (EBL)918282
  • (OCoLC)801681572
  • (MiAaPQ)EBC4035492
  • (MiAaPQ)EBC918282
  • (CaBNVSL)mat08040251
  • (IDAMS)0b00006485f0e893
  • (IEEE)8040251
  • (DLC) 2012029825
  • (EXLCZ)992670000000246196
System details
Mode of access: World Wide Web
Label
Vehicle safety communications : protocols, security, and privacy, Luca Delgrossi, Tao Zhang
Publication
Distribution
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier MARC source
rdacarrier
Content category
text
Content type MARC source
rdacontent
Contents
  • -- Foreword xv / Ralf G. Herrtwich -- Foreword xvii / Flavio Bonomi -- Foreword xix / Adam Drobot -- Preface xxi -- Acknowledgments xxv -- 1 Traffic Safety 1 -- 1.1 Traffic Safety Facts 1 -- 1.1.1 Fatalities 2 -- 1.1.2 Leading Causes of Crashes 3 -- 1.1.3 Current Trends 5 -- 1.2 European Union 5 -- 1.3 Japan 7 -- 1.4 Developing Countries 7 -- References 8 -- 2 Automotive Safety Evolution 10 -- 2.1 Passive Safety 10 -- 2.1.1 Safety Cage and the Birth of Passive Safety 10 -- 2.1.2 Seat Belts 11 -- 2.1.3 Air Bags 11 -- 2.2 Active Safety 12 -- 2.2.1 Antilock Braking System 12 -- 2.2.2 Electronic Stability Control 13 -- 2.2.3 Brake Assist 13 -- 2.3 Advanced Driver Assistance Systems 14 -- 2.3.1 Adaptive Cruise Control 15 -- 2.3.2 Blind Spot Assist 16 -- 2.3.3 Attention Assist 16 -- 2.3.4 Precrash Systems 16 -- 2.4 Cooperative Safety 17 -- References 18 -- 3 Vehicle Architectures 20 -- 3.1 Electronic Control Units 20 -- 3.2 Vehicle Sensors 21 -- 3.2.1 Radars 21 -- 3.2.2 Cameras 21 -- 3.3 Onboard Communication Networks 22 -- 3.3.1 Controller Area Network 23 -- 3.3.2 Local Interconnect Network 23 -- 3.3.3 FlexRay 24 -- 3.3.4 Media Oriented Systems Transport 24 -- 3.3.5 Onboard Diagnostics 24 -- 3.4 Vehicle Data 25 -- 3.5 Vehicle Data Security 26 -- 3.6 Vehicle Positioning 27 -- 3.6.1 Global Positioning System 27 -- 3.6.2 Galileo 29 -- 3.6.3 Global Navigation Satellite System 29 -- 3.6.4 Positioning Accuracy 30 -- References 30 -- 4 Connected Vehicles 32 -- 4.1 Connected Vehicle Applications 32 -- 4.1.1 Hard Safety Applications 32 -- 4.1.2 Soft Safety Applications 33 -- 4.1.3 Mobility and Convenience Applications 33 -- 4.2 Uniqueness in Consumer Vehicle Networks 34 -- 4.3 Vehicle Communication Modes 36 -- 4.3.1 Vehicle-to-Vehicle Local Broadcast 36 -- 4.3.2 V2V Multihop Message Dissemination 37 -- 4.3.3 Infrastructure-to-Vehicle Local Broadcast 38 -- 4.3.4 Vehicle-to-Infrastructure Bidirectional Communications 39 -- 4.4 Wireless Communications Technology for Vehicles 39 -- References 42
  • 5 Dedicated Short-Range Communications 44 -- 5.1 The 5.9 GHz Spectrum 44 -- 5.1.1 DSRC Frequency Band Usage 45 -- 5.1.2 DSRC Channels 45 -- 5.1.3 DSRC Operations 46 -- 5.2 DSRC in the European Union 46 -- 5.3 DSRC in Japan 47 -- 5.4 DSRC Standards 48 -- 5.4.1 Wireless Access in Vehicular Environments 48 -- 5.4.2 Wireless Access in Vehicular Environments Protocol Stack 48 -- 5.4.3 International Harmonization 50 -- References 50 -- 6 WAVE Physical Layer 52 -- 6.1 Physical Layer Operations 52 -- 6.1.1 Orthogonal Frequency Division Multiplexing 52 -- 6.1.2 Modulation and Coding Rates 53 -- 6.1.3 Frame Reception 54 -- 6.2 PHY Amendments 55 -- 6.2.1 Channel Width 56 -- 6.2.2 Spectrum Masks 56 -- 6.2.3 Improved Receiver Performance 57 -- 6.3 PHY Layer Modeling 57 -- 6.3.1 Network Simulator Architecture 58 -- 6.3.2 RF Model 59 -- 6.3.3 Wireless PHY 61 -- References 62 -- 7 WAVE Media Access Control Layer 64 -- 7.1 Media Access Control Layer Operations 64 -- 7.1.1 Carrier Sensing Multiple Access with Collision Avoidance 64 -- 7.1.2 Hidden Terminal Effects 65 -- 7.1.3 Basic Service Set 66 -- 7.2 MAC Layer Amendments 66 -- 7.3 MAC Layer Modeling 67 -- 7.3.1 Transmission 68 -- 7.3.2 Reception 68 -- 7.3.3 Channel State Manager 68 -- 7.3.4 Back-Off Manager 69 -- 7.3.5 Transmission Coordination 70 -- 7.3.6 Reception Coordination 71 -- 7.4 Overhauled ns-2 Implementation 72 -- References 74 -- 8 DSRC Data Rates 75 -- 8.1 Introduction 75 -- 8.2 Communication Density 76 -- 8.2.1 Simulation Study 77 -- 8.2.2 Broadcast Reception Rates 78 -- 8.2.3 Channel Access Delay 81 -- 8.2.4 Frames Reception Failures 83 -- 8.3 Optimal Data Rate 85 -- 8.3.1 Modulation and Coding Rates 85 -- 8.3.2 Simulation Study 86 -- 8.3.3 Simulation Matrix 87 -- 8.3.4 Simulation Results 88 -- References 91 -- 9 WAVE Upper Layers 93 -- 9.1 Introduction 93 -- 9.2 DSRC Multichannel Operations 94 -- 9.2.1 Time Synchronization 94 -- 9.2.2 Synchronization Intervals 95 -- 9.2.3 Guard Intervals 96 -- 9.2.4 Channel Switching 96
  • 9.2.5 Channel Switching State Machine 96 -- 9.3 Protocol Evaluation 97 -- 9.3.1 Simulation Study 98 -- 9.3.2 Simulation Scenarios 99 -- 9.3.3 Simulation Results 99 -- 9.3.4 Protocol Enhancements 102 -- 9.4 WAVE Short Message Protocol 103 -- References 104 -- 10 Vehicle-to-Infrastructure Safety Applications 106 -- 10.1 Intersection Crashes 106 -- 10.2 Cooperative Intersection Collision Avoidance System for Violations 107 -- 10.2.1 CICAS-V Design 107 -- 10.2.2 CICAS-V Development 110 -- 10.2.3 CICAS-V Testing 116 -- 10.3 Integrated Safety Demonstration 118 -- 10.3.1 Demonstration Concept 118 -- 10.3.2 Hardware Components 120 -- 10.3.3 Demo Design 121 -- References 124 -- 11 Vehicle-to-Vehicle Safety Applications 126 -- 11.1 Cooperation among Vehicles 126 -- 11.2 V2V Safety Applications 127 -- 11.3 V2V Safety Applications Design 128 -- 11.3.1 Basic Safety Messages 129 -- 11.3.2 Minimum Performance Requirements 129 -- 11.3.3 Target Classifi cation 131 -- 11.3.4 Vehicle Representation 132 -- 11.3.5 Sample Applications 133 -- 11.4 System Implementation 135 -- 11.4.1 Onboard Unit Hardware Components 135 -- 11.4.2 OBU Software Architecture 135 -- 11.4.3 Driver / Vehicle Interface 137 -- 11.5 System Testing 138 -- 11.5.1 Communications Coverage and Antenna Considerations 138 -- 11.5.2 Positioning 139 -- References 140 -- 12 DSRC Scalability 141 -- 12.1 Introduction 141 -- 12.2 DSRC Data Traffic 142 -- 12.2.1 DSRC Safety Messages 142 -- 12.2.2 Transmission Parameters 143 -- 12.2.3 Channel Load Assessment 144 -- 12.3 Congestion Control Algorithms 145 -- 12.3.1 Desired Properties 145 -- 12.3.2 Transmission Power Adjustment 146 -- 12.3.3 Message Rate Adjustment 147 -- 12.3.4 Simulation Study 148 -- 12.4 Conclusions 148 -- References 149 -- 13 Security and Privacy Threats and Requirements 151 -- 13.1 Introduction 151 -- 13.2 Adversaries 151 -- 13.3 Security Threats 152 -- 13.3.1 Send False Safety Messages Using Valid Security Credentials 152 -- 13.3.2 Falsely Accuse Innocent Vehicles 153
  • 13.3.3 Impersonate Vehicles or Other Network Entities 153 -- 13.3.4 Denial-of-Service Attacks Specific to Consumer Vehicle Networks 154 -- 13.3.5 Compromise OBU Software or Firmware 155 -- 13.4 Privacy Threats 155 -- 13.4.1 Privacy in a Vehicle Network 155 -- 13.4.2 Privacy Threats in Consumer Vehicle Networks 156 -- 13.4.3 How Driver Privacy can be Breached Today 158 -- 13.5 Basic Security Capabilities 159 -- 13.5.1 Authentication 159 -- 13.5.2 Misbehavior Detection and Revocation 160 -- 13.5.3 Data Integrity 160 -- 13.5.4 Data Confidentiality 160 -- 13.6 Privacy Protections Capabilities 161 -- 13.7 Design and Performance Considerations 161 -- 13.7.1 Scalability 162 -- 13.7.2 Balancing Competing Requirements 162 -- 13.7.3 Minimal Side Effects 163 -- 13.7.4 Quantifi able Levels of Security and Privacy 163 -- 13.7.5 Adaptability 163 -- 13.7.6 Security and Privacy Protection for V2V Broadcast 163 -- 13.7.7 Security and Privacy Protection for Communications with Security Servers 164 -- References 165 -- 14 Cryptographic Mechanisms 167 -- 14.1 Introduction 167 -- 14.2 Categories of Cryptographic Mechanisms 167 -- 14.2.1 Cryptographic Hash Functions 168 -- 14.2.2 Symmetric Key Algorithms 169 -- 14.2.3 Public Key (Asymmetric Key) Algorithms 170 -- 14.3 Digital Signature Algorithms 172 -- 14.3.1 The RSA Algorithm 172 -- 14.3.2 The DSA Algorithm 178 -- 14.3.3 The ECDSA Algorithm 184 -- 14.3.4 ECDSA for Vehicle Safety Communications 194 -- 14.4 Message Authentication and Message Integrity Verifi cation 196 -- 14.4.1 Authentication and Integrity Verifi cation Using Hash Functions 197 -- 14.4.2 Authentication and Integrity Verifi cation Using Digital Signatures 198 -- 14.5 Diffi e / Hellman Key Establishment Protocol 200 -- 14.5.1 The Original Diffie / Hellman Key Establishment Protocol 200 -- 14.5.2 Elliptic Curve Diffie / Hellman Key Establishment Protocol 201 -- 14.6 Elliptic Curve Integrated Encryption Scheme (ECIES) 202 -- 14.6.1 The Basic Idea 202 -- 14.6.2 Scheme Setup 202
  • 14.6.3 Encrypt a Message 202 -- 14.6.4 Decrypt a Message 204 -- 14.6.5 Performance 204 -- References 206 -- 15 Public Key Infrastructure for Vehicle Networks 209 -- 15.1 Introduction 209 -- 15.2 Public Key Certificates 210 -- 15.3 Message Authentication with Certificates 211 -- 15.4 Certifi cate Revocation List 212 -- 15.5 A Baseline Reference Vehicular PKI Model 213 -- 15.6 Confi gure Initial Security Parameters and Assign Initial Certificates 215 -- 15.6.1 Vehicles Create Their Private and Public Keys 216 -- 15.6.2 Certificate Authority Creates Private and Public Keys for Vehicles 217 -- 15.7 Acquire New Keys and Certifi cates 217 -- 15.8 Distribute Certifi cates to Vehicles for Signature Verifications 220 -- 15.9 Detect Misused Certifi cates and Misbehaving Vehicles 222 -- 15.9.1 Local Misbehavior Detection 223 -- 15.9.2 Global Misbehavior Detection 224 -- 15.9.3 Misbehavior Reporting 224 -- 15.10 Ways for Vehicles to Acquire CRLs 226 -- 15.11 How Often CRLs should be Distributed to Vehicles? 228 -- 15.12 PKI Hierarchy 230 -- 15.12.1 Certifi cate Chaining to Enable Hierarchical CAs 231 -- 15.12.2 Hierarchical CA Architecture Example 231 -- 15.13 Privacy-Preserving Vehicular PKI 233 -- 15.13.1 Quantitative Measurements of Vehicle Anonymity 234 -- 15.13.2 Quantitative Measurement of Message Unlinkability 234 -- References 235 -- 16 Privacy Protection with Shared Certificates 237 -- 16.1 Shared Certificates 237 -- 16.2 The Combinatorial Certificate Scheme 237 -- 16.3 Certificate Revocation Collateral Damage 239 -- 16.4 Certified Intervals 242 -- 16.4.1 The Concept of Certified Interval 242 -- 16.4.2 Certified Interval Produced by the Original Combinatorial Certificate Scheme 242 -- 16.5 Reduce Collateral Damage and Improve Certified Interval 244 -- 16.5.1 Reduce Collateral Damage Caused by a Single Misused Certificate 245 -- 16.5.2 Vehicles Become Statistically Distinguishable When Misusing Multiple Certificates 248 -- 16.5.3 The Dynamic Reward Algorithm 250 -- 16.6 Privacy in Low Vehicle Density Areas 253
  • 16.6.1 The Problem 253 -- 16.6.2 The Blend-In Algorithm to Improve Privacy 256 -- References 259 -- 17 Privacy Protection with Short-Lived Unique Certificates 260 -- 17.1 Short-Lived Unique Certificates 260 -- 17.2 The Basic Short-Lived Certificate Scheme 261 -- 17.3 The Problem of Large CRL 263 -- 17.4 Anonymously Linked Certificates to Reduce CRL Size 264 -- 17.4.1 Certificate Tags 264 -- 17.4.2 CRL Processing by Vehicles 265 -- 17.4.3 Backward Unlinkability 267 -- 17.5 Reduce CRL Search Time 268 -- 17.6 Unlinked Short-Lived Certificates 269 -- 17.7 Reduce the Volume of Certificate Request and Response Messages 270 -- 17.8 Determine the Number of Certificates for Each Vehicle 270 -- References 273 -- 18 Privacy Protection with Group Signatures 274 -- 18.1 Group Signatures 274 -- 18.2 Zero-Knowledge Proof of Knowledge 275 -- 18.3 The ACJT Group Signature Scheme and its Extensions 277 -- 18.3.1 The ACJT Group Signature Scheme 277 -- 18.3.2 The Challenge of Group Membership Revocation 282 -- 18.3.3 ACJT Extensions to Support Membership Revocation 283 -- 18.4 The CG Group Signature Scheme with Revocation 286 -- 18.5 The Short Group Signatures Scheme 288 -- 18.5.1 The Short Group Signatures Scheme 288 -- 18.5.2 Membership Revocation 291 -- 18.6 Group Signature Schemes with Verifier-Local Revocation 292 -- References 293 -- 19 Privacy Protection against Certificate Authorities 295 -- 19.1 Introduction 295 -- 19.2 Basic Idea 295 -- 19.3 Baseline Split CA Architecture, Protocol, and Message Processing 297 -- 19.4 Split CA Architecture for Shared Certifi cates 301 -- 19.5 Split CA Architecture for Unlinked Short-Lived Certificates 302 -- 19.5.1 Acquire One Unlinked Certifi cate at a Time 302 -- 19.5.2 Assign Batches of Unlinked Short-Lived Certifi cates 304 -- 19.5.3 Revoke Batches of Unlinked Certifi cates 306 -- 19.5.4 Request for Decryption Keys for Certificate Batches 307 -- 19.6 Split CA Architecture for Anonymously Linked Short-Lived Certificates 308 -- 19.6.1 Assign One Anonymously Linked Short-Lived Certificate at a Time 308
  • 19.6.2 Assign Batches of Anonymously Linked Short-Lived Certificates 311 -- 19.6.3 Revoke Batches of Anonymously Linked Short-Lived Certificates 312 -- 19.6.4 Request for Decryption Keys for Certificate Batches 313 -- References 314 -- 20 Comparison of Privacy-Preserving Certificate Management Schemes 315 -- 20.1 Introduction 315 -- 20.2 Comparison of Main Characteristics 316 -- 20.3 Misbehavior Detection 320 -- 20.4 Abilities to Prevent Privacy Abuse by CA and MDS Operators 321 -- 20.5 Summary 322 -- 21 IEEE 1609.2 Security Services 323 -- 21.1 Introduction 323 -- 21.2 The IEEE 1609.2 Standard 323 -- 21.3 Certificates and Certificate Authority Hierarchy 325 -- 21.4 Formats for Public Key, Signature, Certificate, and CRL 327 -- 21.4.1 Public Key Formats 327 -- 21.4.2 Signature Formats 328 -- 21.4.3 Certificate Format 329 -- 21.4.4 CRL Format 332 -- 21.5 Message Formats and Processing for Generating Encrypted Messages 333 -- 21.6 Sending Messages 335 -- 21.7 Request Certifi cates from the CA 336 -- 21.8 Request and Processing CRL 343 -- 21.9 What the Current IEEE 1609.2 Standard Does Not Cover 344 -- 21.9.1 No Support for Anonymous Message Authentication 344 -- 21.9.2 Separate Vehicle-CA Communication Protocols Are Required 344 -- 21.9.3 Interactions and Interfaces between CA Entities Not Addressed / 346 -- References 346 -- 22 4G for Vehicle Safety Communications 347 -- 22.1 Introduction 347 -- 22.2 Long-Term Revolution (LTE) 347 -- 22.3 LTE for Vehicle Safety Communications/ 353 -- 22.3.1 Issues to Be Addressed 353 -- 22.3.2 LTE for V2I Safety Communications 353 -- 22.3.3 LTE for V2V Safety Communications 356 -- 22.3.4 LTE Broadcast and Multicast Services 357 -- References 358 -- Glossary 360 -- Index 367
Dimensions
unknown
Extent
1 online resource (400 p.)
Form of item
online
Governing access note
Restricted to subscribers or individual electronic text purchasers
Isbn
9781118452196
Media category
computer
Media MARC source
rdamedia
Other control number
10.1002/9781118452189
Specific material designation
remote
System control number
  • (CKB)2670000000246196
  • (EBL)918282
  • (OCoLC)801681572
  • (MiAaPQ)EBC4035492
  • (MiAaPQ)EBC918282
  • (CaBNVSL)mat08040251
  • (IDAMS)0b00006485f0e893
  • (IEEE)8040251
  • (DLC) 2012029825
  • (EXLCZ)992670000000246196
System details
Mode of access: World Wide Web

Library Locations

  • Architecture LibraryBorrow it
    Gould Hall 830 Van Vleet Oval Rm. 105, Norman, OK, 73019, US
    35.205706 -97.445050
  • Bizzell Memorial LibraryBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Boorstin CollectionBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Chinese Literature Translation ArchiveBorrow it
    401 W. Brooks St., RM 414, Norman, OK, 73019, US
    35.207487 -97.447906
  • Engineering LibraryBorrow it
    Felgar Hall 865 Asp Avenue, Rm. 222, Norman, OK, 73019, US
    35.205706 -97.445050
  • Fine Arts LibraryBorrow it
    Catlett Music Center 500 West Boyd Street, Rm. 20, Norman, OK, 73019, US
    35.210371 -97.448244
  • Harry W. Bass Business History CollectionBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • History of Science CollectionsBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • John and Mary Nichols Rare Books and Special CollectionsBorrow it
    401 W. Brooks St., Rm. 509NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • Library Service CenterBorrow it
    2601 Technology Place, Norman, OK, 73019, US
    35.185561 -97.398361
  • Price College Digital LibraryBorrow it
    Adams Hall 102 307 West Brooks St., Norman, OK, 73019, US
    35.210371 -97.448244
  • Western History CollectionsBorrow it
    Monnet Hall 630 Parrington Oval, Rm. 300, Norman, OK, 73019, US
    35.209584 -97.445414
Processing Feedback ...