The Resource Sustainability, energy and architecture : case studies in realizing green buildings, Ali Sayigh

Sustainability, energy and architecture : case studies in realizing green buildings, Ali Sayigh

Label
Sustainability, energy and architecture : case studies in realizing green buildings
Title
Sustainability, energy and architecture
Title remainder
case studies in realizing green buildings
Statement of responsibility
Ali Sayigh
Creator
Subject
Genre
Language
eng
Summary
This unique volume offers insights from renowned experts in energy efficient building from the world over, providing a multi-faceted overview of the state-of-the-art in energy efficient architecture. It opens by defining what constitutes a sustainable building, suggesting bases for sorely needed benchmarks, then explains the most important techniques and tools available to engineers and architects exploring green building technologies. It covers such pivotal issues as daylighting, LED lighting, integrating renewables such as solar thermal and cooling, retrofitting, LEED and similar certification efforts, passive houses, net-zero and close-zero structures, water recycling, and much more. Highlighting best practices for commercial buildings and private homes, in widely varied climates and within vastly different socio-economic contexts, this illustrated reference will guide architects and engineers in making sustainable choices in building materials and methods. Explains the best methods and materials to support energy efficient building Features case studies by experts from a dozen countries, demonstrating how sustainable architecture can be achieved in varied climates and economies Covers both new constructions and retrofitting of existing structures
Cataloging source
E7B
http://library.link/vocab/creatorName
Sayigh, Ali
Dewey number
720.47
Illustrations
  • illustrations
  • charts
Index
index present
LC call number
NA2542.36
LC item number
.S29 2014eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/subjectName
  • Sustainable architecture
  • Sustainable buildings
  • ARCHITECTURE
  • ARCHITECTURE
  • ARCHITECTURE
  • ARCHITECTURE
  • Sustainable architecture
  • Sustainable buildings
Label
Sustainability, energy and architecture : case studies in realizing green buildings, Ali Sayigh
Link
https://ezproxy.lib.ou.edu/login?url=https://www.sciencedirect.com/science/book/9780123972699
Instantiates
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • 1. Dutch Efforts Towards a Sustainable Built Environment / Wim Zeiler -- 2. Low Energy Approaches to Design-Led Schemes -- 134. Webber Street -- 3. Sustainable Construction Materials / Kenneth Ip -- 4. The Sustainable Corporate Image and Renewables: From Technique to the Sensory Experience / Neveen Hamza -- 5. Residential Deep Energy Retrofits in Cold Climates / Shawna Henderson -- 6. Sustainable Building for a Green and an Efficient Built Environment: New and Existing Case Studies in Dubai / Mohsen Aboulnaga -- 7. The LED Lighting Revolution / Nada El-Zein -- 8. Minimum Energy Housing in Cuba / Dania Gonzalez Couret -- 9. Daylighting / Helmut F.O. Mueller -- 10. Vernacular Tower Architecture of Sana'a: Theory and Method for Deriving Sustainable Design Guidelines / Khaled A. Al-Sallal -- 11. Sustainable Buildings in Mediterranean Area / Alessandra Carta -- 13. Key Characteristics of Top Performing Sustainable Buildings from the Perspective of the Users / George Baird -- 14. Sustainable Buildings and their Relationship with Humans and Nature / Maryam Singery -- 15. Architectural Buildings in Romania / Ruxandra Crutescu -- 16. Sustainable Architecture in Africa / Manuel Correia Guedes -- 17. Mud to Skyscraper --
  • 1.4.
  • Sustainable Innovation, or the Tried and Tested
  • 4.3.
  • The 20th Century, the Corporate Image and Sustainability
  • 4.4.
  • The Techno-Centric Sustainable Building in the 21st Century
  • 4.5.
  • The Sustainable Working Shed, Lion House, Alnwick, Northumberland, UK
  • 4.5.1.
  • Sustainable Architecture, An Experiential Sensory Approach
  • 4.6.
  • The Veldhuizerschool Ede
  • Experiencing Renewables in Building Skins
  • 4.7.
  • The Responsive Skin and Corporate Image
  • 4.8.
  • Increasing Facade Layers: Double Skin Facades as a Passive Measure and a Cultural Message
  • 4.9.
  • Sustainability as Haptic Experience
  • Conclusions
  • 5.
  • Residential Deep Energy Retrofits in Cold Climates / Shawna Henderson
  • 1.5.
  • 5.1.
  • Introduction
  • 5.2.
  • Building Materials and Assemblies
  • 5.2.1.
  • The Cost of Insulation vs. the Cost of Fuel
  • 5.3.
  • Ventilation and Air Movement
  • 5.4.
  • Case Studies
  • Christiaan Huygens College: an Energy Plus School
  • 5.4.1.
  • Case Study: A Larsen Truss `Chainsaw Retrofit', Regina, Saskatchewan
  • 5.4.2.
  • Case Study: Interior Above and Below Grade Insulation, Halifax, Nova Scotia
  • 5.4.3.
  • Case Study: Exterior Insulation Above Grade/Interior Insulation Below Grade, Halifax, Nova Scotia and Utica, New York
  • 5.5.
  • Vision: Deep Energy Retrofits and Neighborhood Energy Systems
  • 5.6.
  • What Can We Do to Improve the Teaching of Architects?
  • 1.6.
  • 6.
  • Sustainable Building for a Green and an Efficient Built Environment: New and Existing Case Studies in Dubai / Mohsen Aboulnaga
  • 6.1.
  • Introduction
  • 6.1.1.
  • The Dubai Story
  • 6.2.
  • Climate Change: Cities and Buildings
  • 6.3.
  • Importance of Sustainable/Green Building
  • Conventional Dutch Building Design
  • 6.4.
  • Sustainability Regulations and Laws Contributing to Carbon Emissions Reduction
  • 6.4.1.
  • How does Dubai Measure Up?
  • 6.4.2.
  • Europe
  • 6.4.3.
  • The United Kingdom
  • 6.4.4.
  • Australia
  • 1.7.
  • 6.4.5.
  • New Zealand
  • 6.4.6.
  • Dubai Green Building Policy
  • 6.4.7.
  • Dubai's Iconic Building
  • -Burj Khalifa
  • 6.5.
  • Taxonomy of a Sustainable Building
  • 6.6.
  • Energy Saving Techniques
  • Green Buildings in Dubai, UAE
  • 6.6.1.
  • Case Studies
  • -New Buildings
  • 6.6.2.
  • Case Studies
  • -Existing Buildings
  • 6.7.
  • Conclusions
  • 7.
  • 1.8.
  • The LED Lighting Revolution / Nada El-Zein
  • 7.1.
  • Introduction
  • 7.1.1.
  • History of LED (Light Emitting Diode) Technology and a Brief Technical Background
  • 7.2.
  • From LED Chips to Fixtures
  • 7.2.1.
  • Thermal Management
  • 7.2.2.
  • Novel Design and Examples
  • Drivers (also Transformer and Power Supply)
  • 7.3.
  • Optics
  • 7.4.
  • Fixture Body
  • 7.5.
  • Advantages and Features
  • 7.5.1.
  • Long Operating Life
  • 7.5.2.
  • 1.
  • 1.9.
  • Environmentally Safe (no Mercury)
  • 7.5.3.
  • Significantly Reduced Heat Radiation
  • 7.5.4.
  • Flicker Free and Instant Turn on
  • 7.5.5.
  • Unaffected by Frequent on/off
  • 7.5.6.
  • Dimmability and Controllability
  • 7.5.7.
  • The TNT Green Office
  • Durability
  • 7.5.8.
  • Minimal Light Loss
  • 7.6.
  • Comparisons with Traditional Lighting
  • 7.6.1.
  • Comparison with Halogen and Incandescent Lighting
  • 7.6.2.
  • Comparison with CFLs
  • 7.6.3.
  • 1.10.
  • Comparison with Fluorescent Tubes
  • 7.7.
  • Architectural/General Illumination Applications
  • . 7.7.1. Color Changing/Outdoor Wall Washing
  • 7.7.2.
  • Residential/Retail
  • 7.7.3.
  • Office Lighting
  • 7.8.
  • Case Studies
  • Sustainability
  • 7.8.1.
  • Argo Tea
  • Chicago and New York City, USA
  • 7.8.2.
  • Shangri-la Hotel, Abu Dhabi, UAE
  • 7.8.3.
  • Sons of the Revolution Museum, NYC, USA
  • 7.8.4.
  • Radisson Hotel, Dubai, UAE
  • 7.9.
  • 1.11.
  • Future/Novel Designs Possible with LEDs
  • 7.10.
  • Conclusions --
  • Diverse Sustainability Measures
  • 1.12.
  • Results of GreenCalc+ and LEED Assessment
  • 2.
  • Low Energy Approaches to Design-Led Schemes
  • Dutch Efforts Towards a Sustainable Built Environment / Wim Zeiler
  • Five Case Studies / Nazar Sayigh
  • 2.1.
  • Introduction
  • 2.2.
  • Case Studies 1 and 2
  • Overview
  • 2.2.1.
  • 33
  • 134.
  • Webber Street
  • 1.1.
  • Case Study 1
  • 2.2.2.
  • Stead Street Development, Southwark, London
  • Case Study 2
  • 2.3.
  • Case Study 3
  • Overview
  • 2.3.1.
  • Multi-Purpose Hall, Tower House Scholl, Sheen, Richmond, London
  • Case Study 3
  • Introduction
  • 2.4.
  • Case Studies 4 & 5
  • Overview
  • 2.4.1.
  • Black Diamond House, Tutti Frutti, New Islington, Manchester
  • Case Study 4
  • 2.4.2.
  • Unit 2, The Light Works, Brixton, London
  • Case Study 5
  • 2.5.
  • 1.2.
  • Conclusion
  • 3.
  • Sustainable Construction Materials / Kenneth Ip
  • 3.1.
  • Introduction
  • 3.1.1.
  • World Resources
  • 3.2.
  • Demand for Construction Materials
  • 3.3.
  • Passive Houses
  • Material Resources
  • 3.4.
  • Renewable Materials
  • 3.5.
  • Recycled Materials
  • 3.6.
  • Life Cycle Analysis
  • 3.7.
  • Embodied Energy
  • 3.8.
  • 1.3.
  • Gross Energy Requirement
  • 3.9.
  • Process Energy Requirement
  • 3.10.
  • Embodied Carbon
  • 3.11.
  • Natural Building Materials
  • 3.11.1.
  • Renewable Construction Materials: Timber
  • 3.12.
  • Types of Case Studies
  • Short Rotation Renewable Materials
  • 3.12.1.
  • Hemp
  • 3.13.
  • Summary
  • 4.
  • The Sustainable Corporate Image and Renewables: From Technique to the Sensory Experience / Neveen Hamza
  • 4.1.
  • Introduction
  • 4.2.
  • 8.4.
  • 10.3.
  • Theoretical Model for Sustainable Architecture
  • 10.3.1.
  • Form-Space Relationship Model
  • 10.4.
  • Analysis
  • 10.4.1.
  • The Urban Garden and the Social Square Setting
  • 10.4.2.
  • Tower House Setting
  • The Urban Microclimate
  • 10.4.3.
  • Building Skin and Multi-component Window Setting
  • 10.4.4.
  • Relationships Between Factors
  • 10.4.5.
  • Influence on Form and Space Design
  • 10.5.
  • Conclusion
  • Appendix A Sustainable Design Guidelines Derived From Response of Architectural Form and Space to Climatic and Functional Factors
  • Appendix B A Comparison between a Vertical Form and a Horizontal Form
  • 8.5.
  • 11.
  • Sustainable Buildings in Mediterranean Area / Alessandra Carta
  • 11.1.
  • Abitare Mediterraneo Project
  • 11.2.
  • EULEB
  • 11.2.1.
  • Location
  • 11.2.2.
  • Building Classification
  • Vernacular Architecture in Cuba
  • 11.3.
  • Technological and Business Incubator
  • Lucca, Italy
  • 11.3.1.
  • Identification
  • 11.3.2.
  • General Data
  • 11.3.3.
  • Outdoor and Indoor Climate
  • 11.3.4.
  • 8.6.
  • Insulation
  • 11.3.5.
  • Solar Control
  • 11.3.6.
  • Cooling
  • 11.3.7.
  • Ventilation
  • 11.3.8.
  • Energy Performance
  • 11.3.9.
  • Modern Architecture in Cuba
  • Monitored Comfort
  • 11.3.10.
  • User Acceptance
  • 11.3.11.
  • Financial Data
  • 11.4.
  • Bardini Museum
  • Florence, Italy
  • 11.4.1.
  • General Data
  • 8.7.
  • 11.4.2.
  • Identification
  • 11.4.3.
  • Outdoor and Indoor Climate
  • 11.4.4.
  • Solar Control
  • 11.4.5.
  • Lighting
  • 11.4.6.
  • Cooling
  • Present and Future
  • 11.4.7.
  • Ventilation
  • 11.4.8.
  • Energy Performance
  • 11.4.9.
  • Monitored Comfort
  • 11.4.10.
  • User Acceptance
  • 11.4.11.
  • Financial Data
  • 8.7.1.
  • 11.5.
  • New Meyer Hospital
  • Florence, Italy
  • 11.5.1.
  • General Data
  • 11.5.2.
  • Identification
  • 11.5.3.
  • Outdoor and Indoor Climate
  • 11.5.4.
  • Isolated, Rural and Suburban Housing
  • Green Roof
  • 11.5.5.
  • Solar Control
  • 11.5.6.
  • Heating
  • 11.5.7.
  • Cooling
  • 11.5.8.
  • Ventilation
  • 11.5.9.
  • 8.
  • 8.7.2.
  • Renewable Energy
  • 11.5.10.
  • Co-Generation
  • 11.5.11.
  • Energy Performance
  • 11.5.12.
  • Monitored Comfort
  • 11.5.13.
  • User Acceptance
  • 11.5.14.
  • Multifamily Urban Housing
  • Financial Data
  • 11.6.
  • Primary School
  • Empoli, Italy
  • 11.6.1.
  • General Data
  • 11.6.2.
  • Identification
  • 11.6.3.
  • Outdoor and Indoor
  • 8.8.
  • 11.6.4.
  • Insulation
  • 11.6.5.
  • Solar Control
  • 11.6.6.
  • Lighting
  • 11.6.7.
  • Heating
  • 11.6.8.
  • Natural Ventilation
  • Final Remarks
  • 11.6.9.
  • Cooling
  • 11.6.10.
  • Monitored Comfort
  • 11.6.11.
  • User Acceptance
  • 11.6.12.
  • Financial Data
  • 11.7.
  • Malta Stock Exchange
  • 9.
  • La Villetta, Malta
  • 11.7.1.
  • General Data
  • 11.7.2.
  • Identification
  • 11.7.3.
  • Outdoor and Indoor Climate
  • 11.7.4.
  • Ventilation
  • 11.7.5.
  • Daylighting / Helmut F.O. Mueller
  • Energy Performance
  • 11.7.6.
  • Monitored Comfort
  • 11.7.7.
  • User Acceptance
  • 11.7.8.
  • Financial Data
  • . Contents note continued: 12. A Low-Energy Building Project in Sweden
  • the Lindas Pilot Project / Bahram Moshfegh
  • 12.1.
  • 9.1.
  • Introduction
  • 12.2.
  • The Building's Energy Systems and Buildings in Energy Systems
  • 12.3.
  • Energy Use in Swedish Building Sector
  • 12.4.
  • Energy Use in Residential Buildings
  • 12.4.1.
  • District Heating is an Efficient, Clean and Environmentally Sound Form of Heating
  • 12.4.2.
  • Introduction
  • The Role of District Heating Systems as an Energy Source in Low-Energy Buildings
  • 12.5.
  • New Technologies that Make Buildings more Energy-Efficient and Environmentally Sound
  • 12.6.
  • Action Plans and Energy Policies to Achieve Energy-Efficient Buildings
  • 12.7.
  • Building and the Health of Occupants
  • 12.8.
  • Some Examples of Low-Energy Buildings in Sweden
  • 12.9.
  • 9.2.
  • Energy-Efficient Buildings and Cities
  • a Strategic Direction for Urban Policy Makers
  • 12.10.
  • The Swedish Lindas Pilot Project
  • Houses without Heating Systems
  • 12.10.1.
  • Description of the Lindas Buildings
  • 12.10.2.
  • Energy Usage
  • Measurements and Building Energy Simulations
  • Characteristics and Availability
  • 12.10.3.
  • Indoor Environmental
  • 12.10.4.
  • Environmental Performance and Embodied Energy --
  • Minimum Energy Housing in Cuba / Dania Gonzalez Couret
  • 9.3.
  • Photometric Units
  • 9.4.
  • Colors
  • 9.5.
  • Daylight Availability
  • 9.6.
  • Performance of Daylighting
  • 9.7.
  • Comfort and Health
  • 8.1.
  • 9.7.1.
  • Circadian Effects
  • 9.7.2.
  • Seasonal Affective Disorder
  • 9.7.3.
  • Vitamin D
  • 9.7.4.
  • View Out
  • 9.7.5.
  • Glare
  • Introduction
  • 9.7.6.
  • Color
  • 9.8.
  • Visual Performance
  • 9.9.
  • Daylight Factor
  • 9.10.
  • Thermal Comfort and Energy Use
  • 9.11.
  • Daylighting Design
  • 8.2.
  • 9.11.1.
  • Urban Design
  • 9.11.2.
  • Building and Room Design
  • 9.11.3.
  • Window and Skylight Design
  • 9.12.
  • Daylighting Systems and Solar Control
  • 9.12.1.
  • Glazing
  • Life Cycle and Sustainable Buildings
  • 9.12.2.
  • Diffuse Skylight Transmission
  • 9.12.3.
  • Direct Sunlight Redirection
  • 9.12.4.
  • Light Scattering or Diffusing
  • 9.12.5.
  • Light Transport
  • 9.13.
  • Energy Saving and Daylight Responsive Controls
  • 8.3.
  • 9.13.1.
  • Lighting Control
  • 9.13.2.
  • Window Control
  • 9.13.3.
  • Energy
  • 9.14.
  • Design Tools
  • 10.
  • Vernacular Tower Architecture of Sana'a: Theory and Method for Deriving Sustainable Design Guidelines / Khaled A. Al-Sallal
  • Design Strategies in Warm and Humid Climates
  • 10.1.
  • Introduction
  • 10.2.
  • Background
  • 10.2.1.
  • Geography and Climate of Yemen
  • 10.2.2.
  • Architecture
  • 10.2.3.
  • Thermal Performance of the Vernacular House
  • 13.4.
  • Bioclimatic Project: General Guidelines
  • 16.3.
  • Climatic Context
  • 16.4.
  • Building Location, Form and Orientation
  • 16.5.
  • Shading
  • 16.6.
  • Envelope Coatings
  • 16.7.
  • Design Features of Buildings with High Summary Indices
  • Insulation
  • 16.8.
  • Window Size and Glazing Type
  • 16.9.
  • Natural Ventilation
  • 16.10.
  • Thermal Mass
  • 16.11.
  • Evaporative Cooling
  • 16.12.
  • 13.4.1.
  • Control of Internal Gains
  • 16.13.
  • The Use of Environmental Controls
  • 16.14.
  • Passive Design and Thermal Comfort Criteria
  • 17.
  • Mud to Skyscraper
  • Building Revolution in 50 Years in the Middle East / Ali Sayigh
  • 17.1.
  • Portable Housing: The Bedouin Tent
  • NRG Systems Facility, Vermont, USA
  • 17.2.
  • Mud Houses and Comfort
  • 17.3.
  • A New Generation of Buildings
  • 17.4.
  • What is the Solution?
  • 17.5.
  • Energy and Buildings
  • 17.6.
  • Final Remarks
  • Figures 13.1 and 13.2
  • 13.4.2.
  • Torrent Research Centre, Ahmedabad, India
  • Figures 13.3 and 13.4
  • 13.4.3.
  • Natural Resources Defense Council, California, USA
  • 13.
  • Figures 13.5 and 13.6
  • 13.4.4.
  • Military Families Resource Centre, Toronto, Canada
  • Figures 13.7 and 13.8
  • 13.4.5.
  • The Erskine Building, Canterbury University, New Zealand
  • Figures 13.9 and 13.10
  • 13.4.6.
  • St Mary's Credit Union, Navan, Ireland
  • Figures 13.11 and 13.12
  • Key Characteristics of Top Performing Sustainable Buildings from the Perspective of the Users / George Baird
  • 13.4.7.
  • 40 Albert Road, South Melbourne, Victoria, Australia
  • Figures 13.13 and 13.14
  • 13.4.8.
  • Ministry of Energy, Water and Communications, Putrajaya, Malaysia
  • Figures 13.15 and 13.16
  • 13.4.9.
  • 60 Leicester Street, Melbourne, Australia
  • Figures 13.17 and 13.18
  • 13.4.10.
  • 13.1.
  • AUT Akoranga, Auckland, New Zealand
  • Figures 13.19 and 13.20
  • 13.5.
  • Key Characteristics and Common Features of these Sustainable Buildings
  • Acknowledgments
  • Appendix Calculation of Indices
  • 14.
  • Sustainable Buildings and their Relationship with Humans and Nature / Maryam Singery
  • 14.1.
  • Background and Present Situation
  • Introduction
  • 14.2.
  • Traditional Architecture; The Outcome of a Complex Thinking System
  • 14.3.
  • Traditional Architecture and Adaptive Response to Climate
  • 14.3.1.
  • Courtyards
  • 14.3.2.
  • Apertures
  • 14.3.3.
  • Material and Thermal Mass
  • 13.2.
  • 14.4.
  • Wind Catcher/Tower
  • 14.5.
  • Spatial Organization: A Means to Adapt to Culture and Climate
  • 14.6.
  • Conclusion
  • Acknowledgments
  • 15.
  • Architectural Buildings in Romania / Ruxandra Crutescu
  • 15.1.
  • The Buildings and their Users
  • One Family House in Burlusi Ciofringeni, Arges County, Romania
  • 15.2.
  • Amvic Passive Office Building
  • Bragadiru, Ilfov County, Romania
  • 15.2.1.
  • Planning Concept
  • 15.2.2.
  • Building Construction
  • 15.2.3.
  • Building Envelope
  • 13.3.
  • 15.2.4.
  • The Heating System and Controlled Ventilation System
  • 15.2.5.
  • Vacuum Solar Collectors
  • 15.2.6.
  • Analysis and Monitoring Data
  • 15.3.
  • Residential Living Units in Cluj Napoca, Cluj County, Romania
  • 15.4.
  • Two Passive Houses in Caransebes, Caras-Severin County, Romania
  • Survey Methodology and Analytical Procedures
  • 15.5.
  • Church in Bistra, Neamt County, Romania
  • Low-Energy Building
  • 15.6.
  • Conclusions
  • 16.
  • Sustainable Architecture in Africa / Manuel Correia Guedes
  • 16.1.
  • Introduction
  • 16.2.
Dimensions
unknown
Edition
First edition.
Extent
1 online resource (551 pages)
Form of item
online
Isbn
9780123977571
Media category
computer
Media MARC source
rdamedia
Media type code
c
Note
  • ebs 2016
  • Elsevier
Other physical details
illustrations (chiefly color)
Specific material designation
remote
System control number
  • (OCoLC)861536725
  • (OCoLC)ocn861536725
Label
Sustainability, energy and architecture : case studies in realizing green buildings, Ali Sayigh
Link
https://ezproxy.lib.ou.edu/login?url=https://www.sciencedirect.com/science/book/9780123972699
Publication
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • 1. Dutch Efforts Towards a Sustainable Built Environment / Wim Zeiler -- 2. Low Energy Approaches to Design-Led Schemes -- 134. Webber Street -- 3. Sustainable Construction Materials / Kenneth Ip -- 4. The Sustainable Corporate Image and Renewables: From Technique to the Sensory Experience / Neveen Hamza -- 5. Residential Deep Energy Retrofits in Cold Climates / Shawna Henderson -- 6. Sustainable Building for a Green and an Efficient Built Environment: New and Existing Case Studies in Dubai / Mohsen Aboulnaga -- 7. The LED Lighting Revolution / Nada El-Zein -- 8. Minimum Energy Housing in Cuba / Dania Gonzalez Couret -- 9. Daylighting / Helmut F.O. Mueller -- 10. Vernacular Tower Architecture of Sana'a: Theory and Method for Deriving Sustainable Design Guidelines / Khaled A. Al-Sallal -- 11. Sustainable Buildings in Mediterranean Area / Alessandra Carta -- 13. Key Characteristics of Top Performing Sustainable Buildings from the Perspective of the Users / George Baird -- 14. Sustainable Buildings and their Relationship with Humans and Nature / Maryam Singery -- 15. Architectural Buildings in Romania / Ruxandra Crutescu -- 16. Sustainable Architecture in Africa / Manuel Correia Guedes -- 17. Mud to Skyscraper --
  • 1.4.
  • Sustainable Innovation, or the Tried and Tested
  • 4.3.
  • The 20th Century, the Corporate Image and Sustainability
  • 4.4.
  • The Techno-Centric Sustainable Building in the 21st Century
  • 4.5.
  • The Sustainable Working Shed, Lion House, Alnwick, Northumberland, UK
  • 4.5.1.
  • Sustainable Architecture, An Experiential Sensory Approach
  • 4.6.
  • The Veldhuizerschool Ede
  • Experiencing Renewables in Building Skins
  • 4.7.
  • The Responsive Skin and Corporate Image
  • 4.8.
  • Increasing Facade Layers: Double Skin Facades as a Passive Measure and a Cultural Message
  • 4.9.
  • Sustainability as Haptic Experience
  • Conclusions
  • 5.
  • Residential Deep Energy Retrofits in Cold Climates / Shawna Henderson
  • 1.5.
  • 5.1.
  • Introduction
  • 5.2.
  • Building Materials and Assemblies
  • 5.2.1.
  • The Cost of Insulation vs. the Cost of Fuel
  • 5.3.
  • Ventilation and Air Movement
  • 5.4.
  • Case Studies
  • Christiaan Huygens College: an Energy Plus School
  • 5.4.1.
  • Case Study: A Larsen Truss `Chainsaw Retrofit', Regina, Saskatchewan
  • 5.4.2.
  • Case Study: Interior Above and Below Grade Insulation, Halifax, Nova Scotia
  • 5.4.3.
  • Case Study: Exterior Insulation Above Grade/Interior Insulation Below Grade, Halifax, Nova Scotia and Utica, New York
  • 5.5.
  • Vision: Deep Energy Retrofits and Neighborhood Energy Systems
  • 5.6.
  • What Can We Do to Improve the Teaching of Architects?
  • 1.6.
  • 6.
  • Sustainable Building for a Green and an Efficient Built Environment: New and Existing Case Studies in Dubai / Mohsen Aboulnaga
  • 6.1.
  • Introduction
  • 6.1.1.
  • The Dubai Story
  • 6.2.
  • Climate Change: Cities and Buildings
  • 6.3.
  • Importance of Sustainable/Green Building
  • Conventional Dutch Building Design
  • 6.4.
  • Sustainability Regulations and Laws Contributing to Carbon Emissions Reduction
  • 6.4.1.
  • How does Dubai Measure Up?
  • 6.4.2.
  • Europe
  • 6.4.3.
  • The United Kingdom
  • 6.4.4.
  • Australia
  • 1.7.
  • 6.4.5.
  • New Zealand
  • 6.4.6.
  • Dubai Green Building Policy
  • 6.4.7.
  • Dubai's Iconic Building
  • -Burj Khalifa
  • 6.5.
  • Taxonomy of a Sustainable Building
  • 6.6.
  • Energy Saving Techniques
  • Green Buildings in Dubai, UAE
  • 6.6.1.
  • Case Studies
  • -New Buildings
  • 6.6.2.
  • Case Studies
  • -Existing Buildings
  • 6.7.
  • Conclusions
  • 7.
  • 1.8.
  • The LED Lighting Revolution / Nada El-Zein
  • 7.1.
  • Introduction
  • 7.1.1.
  • History of LED (Light Emitting Diode) Technology and a Brief Technical Background
  • 7.2.
  • From LED Chips to Fixtures
  • 7.2.1.
  • Thermal Management
  • 7.2.2.
  • Novel Design and Examples
  • Drivers (also Transformer and Power Supply)
  • 7.3.
  • Optics
  • 7.4.
  • Fixture Body
  • 7.5.
  • Advantages and Features
  • 7.5.1.
  • Long Operating Life
  • 7.5.2.
  • 1.
  • 1.9.
  • Environmentally Safe (no Mercury)
  • 7.5.3.
  • Significantly Reduced Heat Radiation
  • 7.5.4.
  • Flicker Free and Instant Turn on
  • 7.5.5.
  • Unaffected by Frequent on/off
  • 7.5.6.
  • Dimmability and Controllability
  • 7.5.7.
  • The TNT Green Office
  • Durability
  • 7.5.8.
  • Minimal Light Loss
  • 7.6.
  • Comparisons with Traditional Lighting
  • 7.6.1.
  • Comparison with Halogen and Incandescent Lighting
  • 7.6.2.
  • Comparison with CFLs
  • 7.6.3.
  • 1.10.
  • Comparison with Fluorescent Tubes
  • 7.7.
  • Architectural/General Illumination Applications
  • . 7.7.1. Color Changing/Outdoor Wall Washing
  • 7.7.2.
  • Residential/Retail
  • 7.7.3.
  • Office Lighting
  • 7.8.
  • Case Studies
  • Sustainability
  • 7.8.1.
  • Argo Tea
  • Chicago and New York City, USA
  • 7.8.2.
  • Shangri-la Hotel, Abu Dhabi, UAE
  • 7.8.3.
  • Sons of the Revolution Museum, NYC, USA
  • 7.8.4.
  • Radisson Hotel, Dubai, UAE
  • 7.9.
  • 1.11.
  • Future/Novel Designs Possible with LEDs
  • 7.10.
  • Conclusions --
  • Diverse Sustainability Measures
  • 1.12.
  • Results of GreenCalc+ and LEED Assessment
  • 2.
  • Low Energy Approaches to Design-Led Schemes
  • Dutch Efforts Towards a Sustainable Built Environment / Wim Zeiler
  • Five Case Studies / Nazar Sayigh
  • 2.1.
  • Introduction
  • 2.2.
  • Case Studies 1 and 2
  • Overview
  • 2.2.1.
  • 33
  • 134.
  • Webber Street
  • 1.1.
  • Case Study 1
  • 2.2.2.
  • Stead Street Development, Southwark, London
  • Case Study 2
  • 2.3.
  • Case Study 3
  • Overview
  • 2.3.1.
  • Multi-Purpose Hall, Tower House Scholl, Sheen, Richmond, London
  • Case Study 3
  • Introduction
  • 2.4.
  • Case Studies 4 & 5
  • Overview
  • 2.4.1.
  • Black Diamond House, Tutti Frutti, New Islington, Manchester
  • Case Study 4
  • 2.4.2.
  • Unit 2, The Light Works, Brixton, London
  • Case Study 5
  • 2.5.
  • 1.2.
  • Conclusion
  • 3.
  • Sustainable Construction Materials / Kenneth Ip
  • 3.1.
  • Introduction
  • 3.1.1.
  • World Resources
  • 3.2.
  • Demand for Construction Materials
  • 3.3.
  • Passive Houses
  • Material Resources
  • 3.4.
  • Renewable Materials
  • 3.5.
  • Recycled Materials
  • 3.6.
  • Life Cycle Analysis
  • 3.7.
  • Embodied Energy
  • 3.8.
  • 1.3.
  • Gross Energy Requirement
  • 3.9.
  • Process Energy Requirement
  • 3.10.
  • Embodied Carbon
  • 3.11.
  • Natural Building Materials
  • 3.11.1.
  • Renewable Construction Materials: Timber
  • 3.12.
  • Types of Case Studies
  • Short Rotation Renewable Materials
  • 3.12.1.
  • Hemp
  • 3.13.
  • Summary
  • 4.
  • The Sustainable Corporate Image and Renewables: From Technique to the Sensory Experience / Neveen Hamza
  • 4.1.
  • Introduction
  • 4.2.
  • 8.4.
  • 10.3.
  • Theoretical Model for Sustainable Architecture
  • 10.3.1.
  • Form-Space Relationship Model
  • 10.4.
  • Analysis
  • 10.4.1.
  • The Urban Garden and the Social Square Setting
  • 10.4.2.
  • Tower House Setting
  • The Urban Microclimate
  • 10.4.3.
  • Building Skin and Multi-component Window Setting
  • 10.4.4.
  • Relationships Between Factors
  • 10.4.5.
  • Influence on Form and Space Design
  • 10.5.
  • Conclusion
  • Appendix A Sustainable Design Guidelines Derived From Response of Architectural Form and Space to Climatic and Functional Factors
  • Appendix B A Comparison between a Vertical Form and a Horizontal Form
  • 8.5.
  • 11.
  • Sustainable Buildings in Mediterranean Area / Alessandra Carta
  • 11.1.
  • Abitare Mediterraneo Project
  • 11.2.
  • EULEB
  • 11.2.1.
  • Location
  • 11.2.2.
  • Building Classification
  • Vernacular Architecture in Cuba
  • 11.3.
  • Technological and Business Incubator
  • Lucca, Italy
  • 11.3.1.
  • Identification
  • 11.3.2.
  • General Data
  • 11.3.3.
  • Outdoor and Indoor Climate
  • 11.3.4.
  • 8.6.
  • Insulation
  • 11.3.5.
  • Solar Control
  • 11.3.6.
  • Cooling
  • 11.3.7.
  • Ventilation
  • 11.3.8.
  • Energy Performance
  • 11.3.9.
  • Modern Architecture in Cuba
  • Monitored Comfort
  • 11.3.10.
  • User Acceptance
  • 11.3.11.
  • Financial Data
  • 11.4.
  • Bardini Museum
  • Florence, Italy
  • 11.4.1.
  • General Data
  • 8.7.
  • 11.4.2.
  • Identification
  • 11.4.3.
  • Outdoor and Indoor Climate
  • 11.4.4.
  • Solar Control
  • 11.4.5.
  • Lighting
  • 11.4.6.
  • Cooling
  • Present and Future
  • 11.4.7.
  • Ventilation
  • 11.4.8.
  • Energy Performance
  • 11.4.9.
  • Monitored Comfort
  • 11.4.10.
  • User Acceptance
  • 11.4.11.
  • Financial Data
  • 8.7.1.
  • 11.5.
  • New Meyer Hospital
  • Florence, Italy
  • 11.5.1.
  • General Data
  • 11.5.2.
  • Identification
  • 11.5.3.
  • Outdoor and Indoor Climate
  • 11.5.4.
  • Isolated, Rural and Suburban Housing
  • Green Roof
  • 11.5.5.
  • Solar Control
  • 11.5.6.
  • Heating
  • 11.5.7.
  • Cooling
  • 11.5.8.
  • Ventilation
  • 11.5.9.
  • 8.
  • 8.7.2.
  • Renewable Energy
  • 11.5.10.
  • Co-Generation
  • 11.5.11.
  • Energy Performance
  • 11.5.12.
  • Monitored Comfort
  • 11.5.13.
  • User Acceptance
  • 11.5.14.
  • Multifamily Urban Housing
  • Financial Data
  • 11.6.
  • Primary School
  • Empoli, Italy
  • 11.6.1.
  • General Data
  • 11.6.2.
  • Identification
  • 11.6.3.
  • Outdoor and Indoor
  • 8.8.
  • 11.6.4.
  • Insulation
  • 11.6.5.
  • Solar Control
  • 11.6.6.
  • Lighting
  • 11.6.7.
  • Heating
  • 11.6.8.
  • Natural Ventilation
  • Final Remarks
  • 11.6.9.
  • Cooling
  • 11.6.10.
  • Monitored Comfort
  • 11.6.11.
  • User Acceptance
  • 11.6.12.
  • Financial Data
  • 11.7.
  • Malta Stock Exchange
  • 9.
  • La Villetta, Malta
  • 11.7.1.
  • General Data
  • 11.7.2.
  • Identification
  • 11.7.3.
  • Outdoor and Indoor Climate
  • 11.7.4.
  • Ventilation
  • 11.7.5.
  • Daylighting / Helmut F.O. Mueller
  • Energy Performance
  • 11.7.6.
  • Monitored Comfort
  • 11.7.7.
  • User Acceptance
  • 11.7.8.
  • Financial Data
  • . Contents note continued: 12. A Low-Energy Building Project in Sweden
  • the Lindas Pilot Project / Bahram Moshfegh
  • 12.1.
  • 9.1.
  • Introduction
  • 12.2.
  • The Building's Energy Systems and Buildings in Energy Systems
  • 12.3.
  • Energy Use in Swedish Building Sector
  • 12.4.
  • Energy Use in Residential Buildings
  • 12.4.1.
  • District Heating is an Efficient, Clean and Environmentally Sound Form of Heating
  • 12.4.2.
  • Introduction
  • The Role of District Heating Systems as an Energy Source in Low-Energy Buildings
  • 12.5.
  • New Technologies that Make Buildings more Energy-Efficient and Environmentally Sound
  • 12.6.
  • Action Plans and Energy Policies to Achieve Energy-Efficient Buildings
  • 12.7.
  • Building and the Health of Occupants
  • 12.8.
  • Some Examples of Low-Energy Buildings in Sweden
  • 12.9.
  • 9.2.
  • Energy-Efficient Buildings and Cities
  • a Strategic Direction for Urban Policy Makers
  • 12.10.
  • The Swedish Lindas Pilot Project
  • Houses without Heating Systems
  • 12.10.1.
  • Description of the Lindas Buildings
  • 12.10.2.
  • Energy Usage
  • Measurements and Building Energy Simulations
  • Characteristics and Availability
  • 12.10.3.
  • Indoor Environmental
  • 12.10.4.
  • Environmental Performance and Embodied Energy --
  • Minimum Energy Housing in Cuba / Dania Gonzalez Couret
  • 9.3.
  • Photometric Units
  • 9.4.
  • Colors
  • 9.5.
  • Daylight Availability
  • 9.6.
  • Performance of Daylighting
  • 9.7.
  • Comfort and Health
  • 8.1.
  • 9.7.1.
  • Circadian Effects
  • 9.7.2.
  • Seasonal Affective Disorder
  • 9.7.3.
  • Vitamin D
  • 9.7.4.
  • View Out
  • 9.7.5.
  • Glare
  • Introduction
  • 9.7.6.
  • Color
  • 9.8.
  • Visual Performance
  • 9.9.
  • Daylight Factor
  • 9.10.
  • Thermal Comfort and Energy Use
  • 9.11.
  • Daylighting Design
  • 8.2.
  • 9.11.1.
  • Urban Design
  • 9.11.2.
  • Building and Room Design
  • 9.11.3.
  • Window and Skylight Design
  • 9.12.
  • Daylighting Systems and Solar Control
  • 9.12.1.
  • Glazing
  • Life Cycle and Sustainable Buildings
  • 9.12.2.
  • Diffuse Skylight Transmission
  • 9.12.3.
  • Direct Sunlight Redirection
  • 9.12.4.
  • Light Scattering or Diffusing
  • 9.12.5.
  • Light Transport
  • 9.13.
  • Energy Saving and Daylight Responsive Controls
  • 8.3.
  • 9.13.1.
  • Lighting Control
  • 9.13.2.
  • Window Control
  • 9.13.3.
  • Energy
  • 9.14.
  • Design Tools
  • 10.
  • Vernacular Tower Architecture of Sana'a: Theory and Method for Deriving Sustainable Design Guidelines / Khaled A. Al-Sallal
  • Design Strategies in Warm and Humid Climates
  • 10.1.
  • Introduction
  • 10.2.
  • Background
  • 10.2.1.
  • Geography and Climate of Yemen
  • 10.2.2.
  • Architecture
  • 10.2.3.
  • Thermal Performance of the Vernacular House
  • 13.4.
  • Bioclimatic Project: General Guidelines
  • 16.3.
  • Climatic Context
  • 16.4.
  • Building Location, Form and Orientation
  • 16.5.
  • Shading
  • 16.6.
  • Envelope Coatings
  • 16.7.
  • Design Features of Buildings with High Summary Indices
  • Insulation
  • 16.8.
  • Window Size and Glazing Type
  • 16.9.
  • Natural Ventilation
  • 16.10.
  • Thermal Mass
  • 16.11.
  • Evaporative Cooling
  • 16.12.
  • 13.4.1.
  • Control of Internal Gains
  • 16.13.
  • The Use of Environmental Controls
  • 16.14.
  • Passive Design and Thermal Comfort Criteria
  • 17.
  • Mud to Skyscraper
  • Building Revolution in 50 Years in the Middle East / Ali Sayigh
  • 17.1.
  • Portable Housing: The Bedouin Tent
  • NRG Systems Facility, Vermont, USA
  • 17.2.
  • Mud Houses and Comfort
  • 17.3.
  • A New Generation of Buildings
  • 17.4.
  • What is the Solution?
  • 17.5.
  • Energy and Buildings
  • 17.6.
  • Final Remarks
  • Figures 13.1 and 13.2
  • 13.4.2.
  • Torrent Research Centre, Ahmedabad, India
  • Figures 13.3 and 13.4
  • 13.4.3.
  • Natural Resources Defense Council, California, USA
  • 13.
  • Figures 13.5 and 13.6
  • 13.4.4.
  • Military Families Resource Centre, Toronto, Canada
  • Figures 13.7 and 13.8
  • 13.4.5.
  • The Erskine Building, Canterbury University, New Zealand
  • Figures 13.9 and 13.10
  • 13.4.6.
  • St Mary's Credit Union, Navan, Ireland
  • Figures 13.11 and 13.12
  • Key Characteristics of Top Performing Sustainable Buildings from the Perspective of the Users / George Baird
  • 13.4.7.
  • 40 Albert Road, South Melbourne, Victoria, Australia
  • Figures 13.13 and 13.14
  • 13.4.8.
  • Ministry of Energy, Water and Communications, Putrajaya, Malaysia
  • Figures 13.15 and 13.16
  • 13.4.9.
  • 60 Leicester Street, Melbourne, Australia
  • Figures 13.17 and 13.18
  • 13.4.10.
  • 13.1.
  • AUT Akoranga, Auckland, New Zealand
  • Figures 13.19 and 13.20
  • 13.5.
  • Key Characteristics and Common Features of these Sustainable Buildings
  • Acknowledgments
  • Appendix Calculation of Indices
  • 14.
  • Sustainable Buildings and their Relationship with Humans and Nature / Maryam Singery
  • 14.1.
  • Background and Present Situation
  • Introduction
  • 14.2.
  • Traditional Architecture; The Outcome of a Complex Thinking System
  • 14.3.
  • Traditional Architecture and Adaptive Response to Climate
  • 14.3.1.
  • Courtyards
  • 14.3.2.
  • Apertures
  • 14.3.3.
  • Material and Thermal Mass
  • 13.2.
  • 14.4.
  • Wind Catcher/Tower
  • 14.5.
  • Spatial Organization: A Means to Adapt to Culture and Climate
  • 14.6.
  • Conclusion
  • Acknowledgments
  • 15.
  • Architectural Buildings in Romania / Ruxandra Crutescu
  • 15.1.
  • The Buildings and their Users
  • One Family House in Burlusi Ciofringeni, Arges County, Romania
  • 15.2.
  • Amvic Passive Office Building
  • Bragadiru, Ilfov County, Romania
  • 15.2.1.
  • Planning Concept
  • 15.2.2.
  • Building Construction
  • 15.2.3.
  • Building Envelope
  • 13.3.
  • 15.2.4.
  • The Heating System and Controlled Ventilation System
  • 15.2.5.
  • Vacuum Solar Collectors
  • 15.2.6.
  • Analysis and Monitoring Data
  • 15.3.
  • Residential Living Units in Cluj Napoca, Cluj County, Romania
  • 15.4.
  • Two Passive Houses in Caransebes, Caras-Severin County, Romania
  • Survey Methodology and Analytical Procedures
  • 15.5.
  • Church in Bistra, Neamt County, Romania
  • Low-Energy Building
  • 15.6.
  • Conclusions
  • 16.
  • Sustainable Architecture in Africa / Manuel Correia Guedes
  • 16.1.
  • Introduction
  • 16.2.
Dimensions
unknown
Edition
First edition.
Extent
1 online resource (551 pages)
Form of item
online
Isbn
9780123977571
Media category
computer
Media MARC source
rdamedia
Media type code
c
Note
  • ebs 2016
  • Elsevier
Other physical details
illustrations (chiefly color)
Specific material designation
remote
System control number
  • (OCoLC)861536725
  • (OCoLC)ocn861536725

Library Locations

  • Architecture LibraryBorrow it
    Gould Hall 830 Van Vleet Oval Rm. 105, Norman, OK, 73019, US
    35.205706 -97.445050
  • Bizzell Memorial LibraryBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Boorstin CollectionBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Chinese Literature Translation ArchiveBorrow it
    401 W. Brooks St., RM 414, Norman, OK, 73019, US
    35.207487 -97.447906
  • Engineering LibraryBorrow it
    Felgar Hall 865 Asp Avenue, Rm. 222, Norman, OK, 73019, US
    35.205706 -97.445050
  • Fine Arts LibraryBorrow it
    Catlett Music Center 500 West Boyd Street, Rm. 20, Norman, OK, 73019, US
    35.210371 -97.448244
  • Harry W. Bass Business History CollectionBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • History of Science CollectionsBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • John and Mary Nichols Rare Books and Special CollectionsBorrow it
    401 W. Brooks St., Rm. 509NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • Library Service CenterBorrow it
    2601 Technology Place, Norman, OK, 73019, US
    35.185561 -97.398361
  • Price College Digital LibraryBorrow it
    Adams Hall 102 307 West Brooks St., Norman, OK, 73019, US
    35.210371 -97.448244
  • Western History CollectionsBorrow it
    Monnet Hall 630 Parrington Oval, Rm. 300, Norman, OK, 73019, US
    35.209584 -97.445414
Processing Feedback ...