The Resource Radiation Damage in Biomolecular Systems, edited by Gustavo García Gómez-Tejedor, Martina Christina Fuss, (electronic resource)

Radiation Damage in Biomolecular Systems, edited by Gustavo García Gómez-Tejedor, Martina Christina Fuss, (electronic resource)

Label
Radiation Damage in Biomolecular Systems
Title
Radiation Damage in Biomolecular Systems
Statement of responsibility
edited by Gustavo García Gómez-Tejedor, Martina Christina Fuss
Contributor
Editor
Editor
Subject
Language
  • eng
  • eng
Summary
Since the discovery of X-rays and radioactivity, ionizing radiations have been widely applied in medicine both for diagnostic and therapeutic purposes. The risks associated with radiation exposure and handling led to the parallel development of the field of radiation protection. Pioneering experiments done by Sanche and co-workers in 2000 showed that low-energy secondary electrons, which are abundantly generated along radiation tracks, are primarily responsible for radiation damage through successive interactions with the molecular constituents of the medium. Apart from ionizing processes, which are usually related to radiation damage, below the ionization level low-energy electrons can induce molecular fragmentation via dissociative processes such as internal excitation and electron attachment. This prompted collaborative projects between different research groups from European countries together with other specialists from Canada, the USA and Australia. This book summarizes the advances achieved by these research groups after more than ten years of studies on radiation damage in biomolecular systems. The book will be of interest to researchers and advanced students in the fields of radiation physics, chemistry and radiation therapy
Member of
Is Subseries of
Dewey number
615.842
http://bibfra.me/vocab/relation/httpidlocgovvocabularyrelatorsedt
  • QwZaDphlBFw
  • BepKUZTIuy8
Language note
English
LC call number
  • QC474-496.9
  • R895-920
Literary form
non fiction
Nature of contents
dictionaries
http://library.link/vocab/relatedWorkOrContributorName
  • García Gómez-Tejedor, Gustavo.
  • Fuss, Martina Christina.
Series statement
Biological and Medical Physics, Biomedical Engineering,
http://library.link/vocab/subjectName
  • Medical physics
  • Radiotherapy
  • Nucleic acids
  • Environmental protection
  • Medical and Radiation Physics
  • Radiotherapy
  • Biological and Medical Physics, Biophysics
  • Nucleic Acid Chemistry
  • Effects of Radiation/Radiation Protection
Label
Radiation Damage in Biomolecular Systems, edited by Gustavo García Gómez-Tejedor, Martina Christina Fuss, (electronic resource)
Instantiates
Publication
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Content category
text
Content type code
txt
Contents
Preface -- Acronyms. Part I Radiation Induced Damage at the Molecular Level 1: Nanoscale Dynamics of Radiosensitivity: Role of Low Energy Electrons -- 2: The Role of Secondary Electrons in Radiation Damage -- 3: Electron Transfer-Induced Fragmentation in (Bio)Molecules by Atom-Molecule -- 4: Following Resonant Compound States after Electron Attachment -- 5: Electron–Biomolecule Collision Studies Using the Schwinger Multichannel Method -- 6: Resonances in Electron Collisions with Small Biomolecules Using the R-Matrix Method -- 7: A Multiple-Scattering Approach to Electron Collisions with Small Molecular Clusters -- 8: Positronium Formation and Scattering from Biologically Relevant Molecules -- 9: Total Cross Sections for Positron Scattering from Bio-Molecules -- 10: Soft X-ray Interaction with Organic Molecules of Biological Interest -- 11: Ion-Induced Radiation Damage in Biomolecular Systems -- 12: Theory and Calculation of Stopping Cross Sections of Nucleobases for Swift Ions. Part II Modelling Radiation Damage 13: Monte Carlo Methods to Model Radiation Interactions and Induced Damage -- 14: Positron and Electron Interactions and Transport in Biological Media -- 15: Energy Loss of Swift Protons in LiquidWater: Role of Optical Data Input and Extension Algorithms -- 16: Quantum-Mechanical Contributions to Numerical Simulations of Charged Particle Transport at the DNA Scale -- 17: Multiscale Approach to Radiation Damage Induced by Ions -- 18: Track-Structure Monte Carlo Modelling in X-ray and Megavoltage Photon Radiotherapy -- 19: Simulation of Medical Linear Accelerators with PENELOPE. Part III Biomedical Aspects of Radiation Effects 20: Repair of DNA Double-Strand Breaks -- 21: Differentially Expressed Genes Associated with Low-Dose Gamma Radiation -- 22: Chromosome Aberrations by Heavy Ions -- 23: Spatial and Temporal Aspects of Radiation Response in Cell and Tissue Models -- 24: Therapeutic Applications of Ionizing Radiations -- 25: Optimized Molecular Imaging through Magnetic Resonance for Improved Target Definition in Radiation Oncology. Part IV Future Trends in Radiation Research and its Applications 26: Medical Applications of Synchrotron Radiation -- 27: Photodynamic Therapy -- 28: Auger Emitting Radiopharmaceuticals for Cancer Therapy -- 29: Using a matrix approach in nonlinear beam dynamics for optimizing beam spot size -- 30 Future Particle Accelerator Developments for Radiation Therapy.Part III Biomedical Aspects of Radiation Effects 20: Repair of DNA Double-Strand Breaks -- 21: Differentially Expressed Genes Associated with Low-Dose Gamma Radiation -- 22: Chromosome Aberrations by Heavy Ions -- 23: Spatial and Temporal Aspects of Radiation Response in Cell and Tissue Models -- 24: Therapeutic Applications of Ionizing Radiations -- 25: Optimized Molecular Imaging through Magnetic Resonance for Improved Target Definition in Radiation Oncology. Part IV Future Trends in Radiation Research and its Applications 26: Medical Applications of Synchrotron Radiation -- 27: Photodynamic Therapy -- 28: Auger Emitting Radiopharmaceuticals for Cancer Therapy -- 29: Using a matrix approach in nonlinear beam dynamics for optimizing beam spot size -- 30 Future Particle Accelerator Developments for Radiation Therapy.Part IV Future Trends in Radiation Research and its Applications 26: Medical Applications of Synchrotron Radiation -- 27: Photodynamic Therapy -- 28: Auger Emitting Radiopharmaceuticals for Cancer Therapy -- 29: Using a matrix approach in nonlinear beam dynamics for optimizing beam spot size -- 30: Future Particle Accelerator Developments for Radiation Therapy
Dimensions
unknown
Edition
1st ed. 2012.
Extent
1 online resource (507 p.)
Form of item
online
Isbn
9789400725645
Media category
computer
Media type code
c
Other control number
10.1007/978-94-007-2564-5
Specific material designation
remote
System control number
  • (CKB)2670000000537292
  • (EBL)886134
  • (OCoLC)779202276
  • (SSID)ssj0000610680
  • (PQKBManifestationID)11381080
  • (PQKBTitleCode)TC0000610680
  • (PQKBWorkID)10639137
  • (PQKB)11090519
  • (DE-He213)978-94-007-2564-5
  • (MiAaPQ)EBC886134
  • (EXLCZ)992670000000537292
Label
Radiation Damage in Biomolecular Systems, edited by Gustavo García Gómez-Tejedor, Martina Christina Fuss, (electronic resource)
Publication
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Content category
text
Content type code
txt
Contents
Preface -- Acronyms. Part I Radiation Induced Damage at the Molecular Level 1: Nanoscale Dynamics of Radiosensitivity: Role of Low Energy Electrons -- 2: The Role of Secondary Electrons in Radiation Damage -- 3: Electron Transfer-Induced Fragmentation in (Bio)Molecules by Atom-Molecule -- 4: Following Resonant Compound States after Electron Attachment -- 5: Electron–Biomolecule Collision Studies Using the Schwinger Multichannel Method -- 6: Resonances in Electron Collisions with Small Biomolecules Using the R-Matrix Method -- 7: A Multiple-Scattering Approach to Electron Collisions with Small Molecular Clusters -- 8: Positronium Formation and Scattering from Biologically Relevant Molecules -- 9: Total Cross Sections for Positron Scattering from Bio-Molecules -- 10: Soft X-ray Interaction with Organic Molecules of Biological Interest -- 11: Ion-Induced Radiation Damage in Biomolecular Systems -- 12: Theory and Calculation of Stopping Cross Sections of Nucleobases for Swift Ions. Part II Modelling Radiation Damage 13: Monte Carlo Methods to Model Radiation Interactions and Induced Damage -- 14: Positron and Electron Interactions and Transport in Biological Media -- 15: Energy Loss of Swift Protons in LiquidWater: Role of Optical Data Input and Extension Algorithms -- 16: Quantum-Mechanical Contributions to Numerical Simulations of Charged Particle Transport at the DNA Scale -- 17: Multiscale Approach to Radiation Damage Induced by Ions -- 18: Track-Structure Monte Carlo Modelling in X-ray and Megavoltage Photon Radiotherapy -- 19: Simulation of Medical Linear Accelerators with PENELOPE. Part III Biomedical Aspects of Radiation Effects 20: Repair of DNA Double-Strand Breaks -- 21: Differentially Expressed Genes Associated with Low-Dose Gamma Radiation -- 22: Chromosome Aberrations by Heavy Ions -- 23: Spatial and Temporal Aspects of Radiation Response in Cell and Tissue Models -- 24: Therapeutic Applications of Ionizing Radiations -- 25: Optimized Molecular Imaging through Magnetic Resonance for Improved Target Definition in Radiation Oncology. Part IV Future Trends in Radiation Research and its Applications 26: Medical Applications of Synchrotron Radiation -- 27: Photodynamic Therapy -- 28: Auger Emitting Radiopharmaceuticals for Cancer Therapy -- 29: Using a matrix approach in nonlinear beam dynamics for optimizing beam spot size -- 30 Future Particle Accelerator Developments for Radiation Therapy.Part III Biomedical Aspects of Radiation Effects 20: Repair of DNA Double-Strand Breaks -- 21: Differentially Expressed Genes Associated with Low-Dose Gamma Radiation -- 22: Chromosome Aberrations by Heavy Ions -- 23: Spatial and Temporal Aspects of Radiation Response in Cell and Tissue Models -- 24: Therapeutic Applications of Ionizing Radiations -- 25: Optimized Molecular Imaging through Magnetic Resonance for Improved Target Definition in Radiation Oncology. Part IV Future Trends in Radiation Research and its Applications 26: Medical Applications of Synchrotron Radiation -- 27: Photodynamic Therapy -- 28: Auger Emitting Radiopharmaceuticals for Cancer Therapy -- 29: Using a matrix approach in nonlinear beam dynamics for optimizing beam spot size -- 30 Future Particle Accelerator Developments for Radiation Therapy.Part IV Future Trends in Radiation Research and its Applications 26: Medical Applications of Synchrotron Radiation -- 27: Photodynamic Therapy -- 28: Auger Emitting Radiopharmaceuticals for Cancer Therapy -- 29: Using a matrix approach in nonlinear beam dynamics for optimizing beam spot size -- 30: Future Particle Accelerator Developments for Radiation Therapy
Dimensions
unknown
Edition
1st ed. 2012.
Extent
1 online resource (507 p.)
Form of item
online
Isbn
9789400725645
Media category
computer
Media type code
c
Other control number
10.1007/978-94-007-2564-5
Specific material designation
remote
System control number
  • (CKB)2670000000537292
  • (EBL)886134
  • (OCoLC)779202276
  • (SSID)ssj0000610680
  • (PQKBManifestationID)11381080
  • (PQKBTitleCode)TC0000610680
  • (PQKBWorkID)10639137
  • (PQKB)11090519
  • (DE-He213)978-94-007-2564-5
  • (MiAaPQ)EBC886134
  • (EXLCZ)992670000000537292

Library Locations

  • Architecture LibraryBorrow it
    Gould Hall 830 Van Vleet Oval Rm. 105, Norman, OK, 73019, US
    35.205706 -97.445050
  • Bizzell Memorial LibraryBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Boorstin CollectionBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Chinese Literature Translation ArchiveBorrow it
    401 W. Brooks St., RM 414, Norman, OK, 73019, US
    35.207487 -97.447906
  • Engineering LibraryBorrow it
    Felgar Hall 865 Asp Avenue, Rm. 222, Norman, OK, 73019, US
    35.205706 -97.445050
  • Fine Arts LibraryBorrow it
    Catlett Music Center 500 West Boyd Street, Rm. 20, Norman, OK, 73019, US
    35.210371 -97.448244
  • Harry W. Bass Business History CollectionBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • History of Science CollectionsBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • John and Mary Nichols Rare Books and Special CollectionsBorrow it
    401 W. Brooks St., Rm. 509NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • Library Service CenterBorrow it
    2601 Technology Place, Norman, OK, 73019, US
    35.185561 -97.398361
  • Price College Digital LibraryBorrow it
    Adams Hall 102 307 West Brooks St., Norman, OK, 73019, US
    35.210371 -97.448244
  • Western History CollectionsBorrow it
    Monnet Hall 630 Parrington Oval, Rm. 300, Norman, OK, 73019, US
    35.209584 -97.445414
Processing Feedback ...