The Resource Linear Algebra, by Larry Smith, (electronic resource)

Linear Algebra, by Larry Smith, (electronic resource)

Label
Linear Algebra
Title
Linear Algebra
Statement of responsibility
by Larry Smith
Creator
Author
Author
Subject
Language
  • eng
  • eng
Summary
This popular and successful text was originally written for a one-semester course in linear algebra at the sophomore undergraduate level. Consequently, the book deals almost exclusively with real finite dimensional vector spaces, but in a setting and formulation that permits easy generalization to abstract vector spaces. A wide selection of examples of vector spaces and linear transformation is presented to serve as a testing ground for the theory. In the second edition, a new chapter on Jordan normal form was added which reappears here in expanded form as the second goal of this new edition, after the principal axis theorem. To achieve these goals in one semester it is necessary to follow a straight path, but this is compensated by a wide selection of examples and exercises. In addition, the author includes an introduction to invariant theory to show that linear algebra alone is incapable of solving these canonical forms problems. This book is a compact but mathematically clean introduction to linear algebra with particular emphasis on topics in abstract algebra, the theory of differential equations, and group representation theory
Member of
http://library.link/vocab/creatorName
Smith, Larry
Dewey number
512.5
http://bibfra.me/vocab/relation/httpidlocgovvocabularyrelatorsaut
Qw6VkjBGrkA
Image bit depth
0
Language note
English
LC call number
QA184-205
Literary form
non fiction
Nature of contents
dictionaries
Series statement
Undergraduate Texts in Mathematics,
http://library.link/vocab/subjectName
  • Matrix theory
  • Linear and Multilinear Algebras, Matrix Theory
Label
Linear Algebra, by Larry Smith, (electronic resource)
Instantiates
Publication
Note
Includes index
Antecedent source
mixed
Carrier category
online resource
Carrier category code
  • cr
Color
not applicable
Content category
text
Content type code
  • txt
Contents
1. Vectors in the Plane and in Space -- 1.1 First Steps -- 1.2 Exercises -- 2. Vector Spaces -- 2.1 Axioms for Vector Spaces -- 2.2 Cartesian (or Euclidean) Spaces -- 2.3 Some Rules for Vector Algebra -- 2.4 Exercises -- 3. Examples of Vector Spaces -- 3.1 Three Basic Examples -- 3.2 Further Examples of Vector Spaces -- 3.3 Exercises -- 4. Subspaces -- 4.1 Basic Properties of Vector Subspaces -- 4.2 Examples of Subspaces -- 4.3 Exercises -- 5. Linear Independence and Dependence -- 5.1 Basic Definitions and Examples -- 5.2 Properties of Independent and Dependent Sets -- 5.3 Exercises -- 6. Finite-Dimensional Vector Spaces and Bases -- 6.1 Finite-Dimensional Vector Spaces -- 6.2 Properties of Bases -- 6.3 Using Bases -- 6.4 Exercises -- 7. The Elements of Vector Spaces: A Summing Up -- 7.1 Numerical Examples -- 7.2 Exercises -- 8. Linear Transformations -- 8.1 Definition of Linear Transformations -- 8.2 Examples of Linear Transformations -- 8.3 Properties of Linear Transformations -- 8.4 Images and Kernels of Linear Transformations -- 8.5 Some Fundamental Constructions -- 8.6 Isomorphism of Vector Spaces -- 8.7 Exercises -- 9. Linear Transformations: Examples and Applications -- 9.1 Numerical Examples -- 9.2 Some Applications -- 9.3 Exercises -- 10. Linear Transformations and Matrices -- 10.1 Linear Transformations and Matrices in IR3 -- 10.2 Some Numerical Examples -- 10.3 Matrices and Their Algebra -- 10.4 Special Types of Matrices -- 10.5 Exercises -- 11. Representing Linear Transformations by Matrices -- 11.1 Representing a Linear Transformation by a Matrix -- 11.2 Basic Theorems -- 11.3 Change of Bases -- 11.4 Exercises -- 12. More on Representing Linear Transformations by Matrices -- 12.1 Projections -- 12.2 Nilpotent Transformations -- 12.3 Cyclic Transformations -- 12.4 Exercises -- 13. Systems of Linear Equations -- 13.1 Existence Theorems -- 13.2 Reduction to Echelon Form -- 13.3 The Simplex Method -- 13.4 Exercises -- 14. The Elements of Eigenvalue and Eigenvector Theory -- 14.1 The Rank of an Endomorphism -- 14.2 Eigenvalues and Eigenvectors -- 14.3 Determinants -- 14.4 The Characteristic Polynomial -- 14.5 Diagonalization Theorems -- 14.6 Exercises -- 15. Inner Product Spaces -- 15.1 Scalar Products -- 15.2 Inner Product Spaces -- 15.3 Isometries -- 15.4 The Riesz Representation Theorem -- 15.5 Legendre Polynomials -- 15.6 Exercises -- 16. The Spectral Theorem and Quadratic Forms -- 16.1 Self-Adjoint Transformations -- 16.2 The Spectral Theorem -- 16.3 The Principal Axis Theorem for Quadratic Forms -- 16.4 A Proof of the Spectral Theorem in the General Case -- 16.5 Exercises -- 17. Jordan Canonical Form -- 17.1 Invariant Subspaces -- 17.2 Nilpotent Transformations -- 17.3 The Jordan Normal Form -- 17.4 Square Roots -- 17.5 The Hamilton-Cayley Theorem -- 17.6 Inverses -- 17.7 Exercises -- 18. Application to Differential Equations -- 18.1 Linear Differential Systems: Basic Definitions -- 18.2 Diagonalizable Systems -- 18.3 Application of Jordan Form -- 18.4 Exercises -- 19. The Similarity Problem -- 19.1 The Fundamental Problem of Linear Algebra -- 19.2 A Bit of Invariant Theory -- 19.3 Exercises -- A. Multilinear Algebra and Determinants -- A.1 Multilinear Forms -- A.2 Determinants -- A.3 Exercises -- B. Complex Numbers -- B.1 The Complex Numbers -- B.2 Exercises -- Font Usage -- Notations
Dimensions
unknown
Edition
Third Edition.
Extent
1 online resource (XII, 454 p.)
File format
multiple file formats
Form of item
online
Isbn
9781461216704
Level of compression
uncompressed
Media category
computer
Media type code
  • c
Other control number
10.1007/978-1-4612-1670-4
Quality assurance targets
absent
Reformatting quality
access
Specific material designation
remote
System control number
  • (CKB)3400000000089647
  • (SSID)ssj0001297408
  • (PQKBManifestationID)11743146
  • (PQKBTitleCode)TC0001297408
  • (PQKBWorkID)11363927
  • (PQKB)10425462
  • (DE-He213)978-1-4612-1670-4
  • (MiAaPQ)EBC3075304
  • (EXLCZ)993400000000089647
Label
Linear Algebra, by Larry Smith, (electronic resource)
Publication
Note
Includes index
Antecedent source
mixed
Carrier category
online resource
Carrier category code
  • cr
Color
not applicable
Content category
text
Content type code
  • txt
Contents
1. Vectors in the Plane and in Space -- 1.1 First Steps -- 1.2 Exercises -- 2. Vector Spaces -- 2.1 Axioms for Vector Spaces -- 2.2 Cartesian (or Euclidean) Spaces -- 2.3 Some Rules for Vector Algebra -- 2.4 Exercises -- 3. Examples of Vector Spaces -- 3.1 Three Basic Examples -- 3.2 Further Examples of Vector Spaces -- 3.3 Exercises -- 4. Subspaces -- 4.1 Basic Properties of Vector Subspaces -- 4.2 Examples of Subspaces -- 4.3 Exercises -- 5. Linear Independence and Dependence -- 5.1 Basic Definitions and Examples -- 5.2 Properties of Independent and Dependent Sets -- 5.3 Exercises -- 6. Finite-Dimensional Vector Spaces and Bases -- 6.1 Finite-Dimensional Vector Spaces -- 6.2 Properties of Bases -- 6.3 Using Bases -- 6.4 Exercises -- 7. The Elements of Vector Spaces: A Summing Up -- 7.1 Numerical Examples -- 7.2 Exercises -- 8. Linear Transformations -- 8.1 Definition of Linear Transformations -- 8.2 Examples of Linear Transformations -- 8.3 Properties of Linear Transformations -- 8.4 Images and Kernels of Linear Transformations -- 8.5 Some Fundamental Constructions -- 8.6 Isomorphism of Vector Spaces -- 8.7 Exercises -- 9. Linear Transformations: Examples and Applications -- 9.1 Numerical Examples -- 9.2 Some Applications -- 9.3 Exercises -- 10. Linear Transformations and Matrices -- 10.1 Linear Transformations and Matrices in IR3 -- 10.2 Some Numerical Examples -- 10.3 Matrices and Their Algebra -- 10.4 Special Types of Matrices -- 10.5 Exercises -- 11. Representing Linear Transformations by Matrices -- 11.1 Representing a Linear Transformation by a Matrix -- 11.2 Basic Theorems -- 11.3 Change of Bases -- 11.4 Exercises -- 12. More on Representing Linear Transformations by Matrices -- 12.1 Projections -- 12.2 Nilpotent Transformations -- 12.3 Cyclic Transformations -- 12.4 Exercises -- 13. Systems of Linear Equations -- 13.1 Existence Theorems -- 13.2 Reduction to Echelon Form -- 13.3 The Simplex Method -- 13.4 Exercises -- 14. The Elements of Eigenvalue and Eigenvector Theory -- 14.1 The Rank of an Endomorphism -- 14.2 Eigenvalues and Eigenvectors -- 14.3 Determinants -- 14.4 The Characteristic Polynomial -- 14.5 Diagonalization Theorems -- 14.6 Exercises -- 15. Inner Product Spaces -- 15.1 Scalar Products -- 15.2 Inner Product Spaces -- 15.3 Isometries -- 15.4 The Riesz Representation Theorem -- 15.5 Legendre Polynomials -- 15.6 Exercises -- 16. The Spectral Theorem and Quadratic Forms -- 16.1 Self-Adjoint Transformations -- 16.2 The Spectral Theorem -- 16.3 The Principal Axis Theorem for Quadratic Forms -- 16.4 A Proof of the Spectral Theorem in the General Case -- 16.5 Exercises -- 17. Jordan Canonical Form -- 17.1 Invariant Subspaces -- 17.2 Nilpotent Transformations -- 17.3 The Jordan Normal Form -- 17.4 Square Roots -- 17.5 The Hamilton-Cayley Theorem -- 17.6 Inverses -- 17.7 Exercises -- 18. Application to Differential Equations -- 18.1 Linear Differential Systems: Basic Definitions -- 18.2 Diagonalizable Systems -- 18.3 Application of Jordan Form -- 18.4 Exercises -- 19. The Similarity Problem -- 19.1 The Fundamental Problem of Linear Algebra -- 19.2 A Bit of Invariant Theory -- 19.3 Exercises -- A. Multilinear Algebra and Determinants -- A.1 Multilinear Forms -- A.2 Determinants -- A.3 Exercises -- B. Complex Numbers -- B.1 The Complex Numbers -- B.2 Exercises -- Font Usage -- Notations
Dimensions
unknown
Edition
Third Edition.
Extent
1 online resource (XII, 454 p.)
File format
multiple file formats
Form of item
online
Isbn
9781461216704
Level of compression
uncompressed
Media category
computer
Media type code
  • c
Other control number
10.1007/978-1-4612-1670-4
Quality assurance targets
absent
Reformatting quality
access
Specific material designation
remote
System control number
  • (CKB)3400000000089647
  • (SSID)ssj0001297408
  • (PQKBManifestationID)11743146
  • (PQKBTitleCode)TC0001297408
  • (PQKBWorkID)11363927
  • (PQKB)10425462
  • (DE-He213)978-1-4612-1670-4
  • (MiAaPQ)EBC3075304
  • (EXLCZ)993400000000089647

Library Locations

  • Architecture LibraryBorrow it
    Gould Hall 830 Van Vleet Oval Rm. 105, Norman, OK, 73019, US
    35.205706 -97.445050
  • Bizzell Memorial LibraryBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Boorstin CollectionBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Chinese Literature Translation ArchiveBorrow it
    401 W. Brooks St., RM 414, Norman, OK, 73019, US
    35.207487 -97.447906
  • Engineering LibraryBorrow it
    Felgar Hall 865 Asp Avenue, Rm. 222, Norman, OK, 73019, US
    35.205706 -97.445050
  • Fine Arts LibraryBorrow it
    Catlett Music Center 500 West Boyd Street, Rm. 20, Norman, OK, 73019, US
    35.210371 -97.448244
  • Harry W. Bass Business History CollectionBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • History of Science CollectionsBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • John and Mary Nichols Rare Books and Special CollectionsBorrow it
    401 W. Brooks St., Rm. 509NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • Library Service CenterBorrow it
    2601 Technology Place, Norman, OK, 73019, US
    35.185561 -97.398361
  • Price College Digital LibraryBorrow it
    Adams Hall 102 307 West Brooks St., Norman, OK, 73019, US
    35.210371 -97.448244
  • Western History CollectionsBorrow it
    Monnet Hall 630 Parrington Oval, Rm. 300, Norman, OK, 73019, US
    35.209584 -97.445414
Processing Feedback ...