The Resource Corneal biomechanics and refractive surgery, Fabio A. Guarnieri, editor

Corneal biomechanics and refractive surgery, Fabio A. Guarnieri, editor

Label
Corneal biomechanics and refractive surgery
Title
Corneal biomechanics and refractive surgery
Statement of responsibility
Fabio A. Guarnieri, editor
Contributor
Editor
Subject
Genre
Language
eng
Summary
This book presents a unique approach not found in any other text for those looking to improve the clinical results of refractive surgery by gaining a better understanding of corneal biomechanics and the instrumentation related to it. Written by leading experts in the field, this book provides authoritative coverage of the interactions of the cornea and the bioinstrumentation, such as corneal topography, pachymetry, aberrometers, tonometry and optical coherence tomography. Organized in an easy-to-read manner, Corneal Biomechanics and Refractive Surgery is designed for refractive surgeons and general ophthalmologists alike and describes the biomechanical role of the corneal tissue and how each part is affected in refractive surgery. Additionally, showing what the bioinstrumentation can measure, how models can improve understanding of the interaction between biomechanics, bioinstrumentation, and refractive surgery, and how these models and bioinstrumentation together can improve the refractive results, are also discussed
Cataloging source
N$T
Dewey number
  • 617.7/19059
  • 610
Illustrations
illustrations
Index
index present
Language note
English
LC call number
RE336
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
NLM call number
WW 168
http://library.link/vocab/relatedWorkOrContributorName
Guarnieri, Fabio A.
http://library.link/vocab/subjectName
  • Cornea
  • Cornea
  • MEDICAL
  • Cornea
  • Medicine & Public Health
  • Ophthalmology
  • Biomedical Engineering
  • Biomedicine general
  • Ophthalmologic Surgical Procedures
  • Biomedical engineering
  • Medical research
  • Ophthalmology
Label
Corneal biomechanics and refractive surgery, Fabio A. Guarnieri, editor
Link
https://ezproxy.lib.ou.edu/login?url=http://link.springer.com/10.1007/978-1-4939-1767-9
Instantiates
Publication
Note
Includes index
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Contributors; Chapter 1: Introduction: Corneal Biomechanics and Refractive Surgery; 1 Refractive Surgery; 2 Biomedical Engineering; 3 Biomechanical Models for Refractive Surgery; 4 Chapter Organization; References; Chapter 2: Corneal Biomechanics; 1 Introduction; 2 The Cornea; 2.1 Anatomical and Physical Properties; 2.2 Histology of the Cornea; 2.3 Corneal Wound Healing; 3 Measurements of the Mechanical Parameters; 3.1 Extensibility of the Cornea; 3.2 Keratoconus Biomechanics; 3.3 Stromal and Descemet Membrane Extensibilities; 3.4 Bowmanś Membrane Importance
  • 3.5 Viscoelastic Parameters4 Biomechanical Models; 5 Toward a Computer-Aided Design of the Refractive Surgery; 6 Data Acquisition; 6.1 Corneal Thickness; 6.2 Corneal-Limbal Ring; 6.3 Anterior Surface; 6.4 Intraocular Pressure; 6.5 Ocular Length and Depth of the Anterior Chamber; 6.6 Objective and Subjective Refraction; 7 Optical Model; 7.1 Generation of Incisions; 8 Mechanical Models; 8.1 Elastic Model; 8.2 Hyperelastic Model; 8.3 Viscoelastic Model; 9 Boundary Conditions; 10 Initial Conditions; 11 Summary; References; Chapter 3: Biomechanics of Incisional Surgery; 1 Introduction
  • 2 Geometry from Corneal Topography3 Finite Element Analysis; 3.1 Generation of the Incision; 3.2 Generation of a Curvature Map; 4 Parametric Study of Radial Keratotomy; 4.1 Relation with the Incision Length; 4.2 Relation with the Optical Zone; 4.3 Relation with Incision Depth; 4.4 Effect of the Youngś Modulus; 4.5 Relation with the Poissonś Ratio; 4.6 Relation with Intraocular Pressure; 5 Discussion; 6 An Exponential Hyperelastic Material Model for the Corneal Tissue; 7 Exponential Models for Biological Tissues; 7.1 Hyperelastic Nearly Incompressible Exponential Model for the Cornea
  • 7.1.1 Fitting Inflation Tests Using an Inverse Method7.1.2 Fitting Normo-Hydrated Inflation Tests; 7.2 Simulation of Radial Keratotomy; Concluding Remarks; 8 Finite Linear Viscoelastic Model; 9 Constitutive Equations; 9.1 Multiplicative Decomposition of the Deformation Gradient; 9.2 Finite Linear Viscoelasticity; 9.3 Calibration with In Vivo Corneal Experiment; Conclusions; References; Chapter 4: Biomechanics of Subtractive Surgery: From ALK to LASIK; 1 Introduction; 1.1 Development of General Model for an Individual Lamella; 1.2 Corneal Model with Rotational Averaging of Lamella
  • 2 Calibration Studies for the Corneal Model2.1 Introduction; 2.2 Calibration with ALK-H and Inflation Tests; 2.3 Normo-Hydrated Inflation Tests; 2.4 Simulation of RK and Comparison with Clinical Results; 3 Simulation of a Lamellar Surgery; 4 Finite Element Simulations of LASIK; 4.1 Comparison of Attempted and Simulated Correction; 4.2 Undercorrection in PRK and LASIK; 4.3 Undercorrection with the Optical Zone; 4.4 Undercorrection with the Preoperative Curvature; 4.5 Undercorrection with Ablation Depth and Optical Zone; Conclusions; References
Dimensions
unknown
Extent
1 online resource (vii, 146 pages)
File format
unknown
Form of item
online
Isbn
9781493917679
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Note
SpringerLink
Other control number
10.1007/978-1-4939-1767-9
Other physical details
illustrations (some color)
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
  • (OCoLC)897377007
  • (OCoLC)ocn897377007
Label
Corneal biomechanics and refractive surgery, Fabio A. Guarnieri, editor
Link
https://ezproxy.lib.ou.edu/login?url=http://link.springer.com/10.1007/978-1-4939-1767-9
Publication
Note
Includes index
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
  • cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
  • txt
Content type MARC source
rdacontent
Contents
  • Contributors; Chapter 1: Introduction: Corneal Biomechanics and Refractive Surgery; 1 Refractive Surgery; 2 Biomedical Engineering; 3 Biomechanical Models for Refractive Surgery; 4 Chapter Organization; References; Chapter 2: Corneal Biomechanics; 1 Introduction; 2 The Cornea; 2.1 Anatomical and Physical Properties; 2.2 Histology of the Cornea; 2.3 Corneal Wound Healing; 3 Measurements of the Mechanical Parameters; 3.1 Extensibility of the Cornea; 3.2 Keratoconus Biomechanics; 3.3 Stromal and Descemet Membrane Extensibilities; 3.4 Bowmanś Membrane Importance
  • 3.5 Viscoelastic Parameters4 Biomechanical Models; 5 Toward a Computer-Aided Design of the Refractive Surgery; 6 Data Acquisition; 6.1 Corneal Thickness; 6.2 Corneal-Limbal Ring; 6.3 Anterior Surface; 6.4 Intraocular Pressure; 6.5 Ocular Length and Depth of the Anterior Chamber; 6.6 Objective and Subjective Refraction; 7 Optical Model; 7.1 Generation of Incisions; 8 Mechanical Models; 8.1 Elastic Model; 8.2 Hyperelastic Model; 8.3 Viscoelastic Model; 9 Boundary Conditions; 10 Initial Conditions; 11 Summary; References; Chapter 3: Biomechanics of Incisional Surgery; 1 Introduction
  • 2 Geometry from Corneal Topography3 Finite Element Analysis; 3.1 Generation of the Incision; 3.2 Generation of a Curvature Map; 4 Parametric Study of Radial Keratotomy; 4.1 Relation with the Incision Length; 4.2 Relation with the Optical Zone; 4.3 Relation with Incision Depth; 4.4 Effect of the Youngś Modulus; 4.5 Relation with the Poissonś Ratio; 4.6 Relation with Intraocular Pressure; 5 Discussion; 6 An Exponential Hyperelastic Material Model for the Corneal Tissue; 7 Exponential Models for Biological Tissues; 7.1 Hyperelastic Nearly Incompressible Exponential Model for the Cornea
  • 7.1.1 Fitting Inflation Tests Using an Inverse Method7.1.2 Fitting Normo-Hydrated Inflation Tests; 7.2 Simulation of Radial Keratotomy; Concluding Remarks; 8 Finite Linear Viscoelastic Model; 9 Constitutive Equations; 9.1 Multiplicative Decomposition of the Deformation Gradient; 9.2 Finite Linear Viscoelasticity; 9.3 Calibration with In Vivo Corneal Experiment; Conclusions; References; Chapter 4: Biomechanics of Subtractive Surgery: From ALK to LASIK; 1 Introduction; 1.1 Development of General Model for an Individual Lamella; 1.2 Corneal Model with Rotational Averaging of Lamella
  • 2 Calibration Studies for the Corneal Model2.1 Introduction; 2.2 Calibration with ALK-H and Inflation Tests; 2.3 Normo-Hydrated Inflation Tests; 2.4 Simulation of RK and Comparison with Clinical Results; 3 Simulation of a Lamellar Surgery; 4 Finite Element Simulations of LASIK; 4.1 Comparison of Attempted and Simulated Correction; 4.2 Undercorrection in PRK and LASIK; 4.3 Undercorrection with the Optical Zone; 4.4 Undercorrection with the Preoperative Curvature; 4.5 Undercorrection with Ablation Depth and Optical Zone; Conclusions; References
Dimensions
unknown
Extent
1 online resource (vii, 146 pages)
File format
unknown
Form of item
online
Isbn
9781493917679
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
  • c
Note
SpringerLink
Other control number
10.1007/978-1-4939-1767-9
Other physical details
illustrations (some color)
Quality assurance targets
not applicable
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
  • (OCoLC)897377007
  • (OCoLC)ocn897377007

Library Locations

  • Architecture LibraryBorrow it
    Gould Hall 830 Van Vleet Oval Rm. 105, Norman, OK, 73019, US
    35.205706 -97.445050
  • Bizzell Memorial LibraryBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Boorstin CollectionBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Chinese Literature Translation ArchiveBorrow it
    401 W. Brooks St., RM 414, Norman, OK, 73019, US
    35.207487 -97.447906
  • Engineering LibraryBorrow it
    Felgar Hall 865 Asp Avenue, Rm. 222, Norman, OK, 73019, US
    35.205706 -97.445050
  • Fine Arts LibraryBorrow it
    Catlett Music Center 500 West Boyd Street, Rm. 20, Norman, OK, 73019, US
    35.210371 -97.448244
  • Harry W. Bass Business History CollectionBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • History of Science CollectionsBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • John and Mary Nichols Rare Books and Special CollectionsBorrow it
    401 W. Brooks St., Rm. 509NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • Library Service CenterBorrow it
    2601 Technology Place, Norman, OK, 73019, US
    35.185561 -97.398361
  • Price College Digital LibraryBorrow it
    Adams Hall 102 307 West Brooks St., Norman, OK, 73019, US
    35.210371 -97.448244
  • Western History CollectionsBorrow it
    Monnet Hall 630 Parrington Oval, Rm. 300, Norman, OK, 73019, US
    35.209584 -97.445414
Processing Feedback ...