The Resource Classification, parameter estimation, and state estimation : an engineering approach using MATLAB, F. van der Heijden ... [et al.], (electronic resource)

Classification, parameter estimation, and state estimation : an engineering approach using MATLAB, F. van der Heijden ... [et al.], (electronic resource)

Label
Classification, parameter estimation, and state estimation : an engineering approach using MATLAB
Title
Classification, parameter estimation, and state estimation
Title remainder
an engineering approach using MATLAB
Statement of responsibility
F. van der Heijden ... [et al.]
Contributor
Subject
Language
eng
Cataloging source
DG1
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
http://library.link/vocab/relatedWorkOrContributorName
Heijden, Ferdinand van der
http://library.link/vocab/subjectName
  • Engineering mathematics
  • Measurement
  • Estimation theory
Label
Classification, parameter estimation, and state estimation : an engineering approach using MATLAB, F. van der Heijden ... [et al.], (electronic resource)
Instantiates
Publication
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Content category
text
Content type code
txt
Contents
  • Classification, Parameter Estimation and State Estimation; Contents; Preface; Foreword; 1 Introduction; 1.1 The scope of the book; 1.1.1 Classification; 1.1.2 Parameter estimation; 1.1.3 State estimation; 1.1.4 Relations between the subjects; 1.2 Engineering; 1.3 The organization of the book; 1.4 References; 2 Detection and Classification; 2.1 Bayesian classification; 2.1.1 Uniform cost function and minimum error rate; 2.1.2 Normal distributed measurements; linear and quadratic classifiers; 2.2 Rejection; 2.2.1 Minimum error rate classification with reject option
  • 2.3 Detection: the two-class case2.4 Selected bibliography; 2.5 Exercises; 3 Parameter Estimation; 3.1 Bayesian estimation; 3.1.1 MMSE estimation; 3.1.2 MAP estimation; 3.1.3 The Gaussian case with linear sensors; 3.1.4 Maximum likelihood estimation; 3.1.5 Unbiased linear MMSE estimation; 3.2 Performance of estimators; 3.2.1 Bias and covariance; 3.2.2 The error covariance of the unbiased linear MMSE estimator; 3.3 Data fitting; 3.3.1 Least squares fitting; 3.3.2 Fitting using a robust error norm; 3.3.3 Regression; 3.4 Overview of the family of estimators; 3.5 Selected bibliography
  • 3.6 Exercises4 State Estimation; 4.1 A general framework for online estimation; 4.1.1 Models; 4.1.2 Optimal online estimation; 4.2 Continuous state variables; 4.2.1 Optimal online estimation in linear-Gaussian systems; 4.2.2 Suboptimal solutions for nonlinear systems; 4.2.3 Other filters for nonlinear systems; 4.3 Discrete state variables; 4.3.1 Hidden Markov models; 4.3.2 Online state estimation; 4.3.3 Offline state estimation; 4.4 Mixed states and the particle filter; 4.4.1 Importance sampling; 4.4.2 Resampling by selection; 4.4.3 The condensation algorithm; 4.5 Selected bibliography
  • 4.6 Exercises5 Supervised Learning; 5.1 Training sets; 5.2 Parametric learning; 5.2.1 Gaussian distribution, mean unknown; 5.2.2 Gaussian distribution, covariance matrix unknown; 5.2.3 Gaussian distribution, mean and covariance matrix both unknown; 5.2.4 Estimation of the prior probabilities; 5.2.5 Binary measurements; 5.3 Nonparametric learning; 5.3.1 Parzen estimation and histogramming; 5.3.2 Nearest neighbour classification; 5.3.3 Linear discriminant functions; 5.3.4 The support vector classifier; 5.3.5 The feed-forward neural network; 5.4 Empirical evaluation; 5.5 References
  • 5.6 Exercises6 Feature Extraction and Selection; 6.1 Criteria for selection and extraction; 6.1.1 Inter/intra class distance; 6.1.2 Chernoff-Bhattacharyya distance; 6.1.3 Other criteria; 6.2 Feature selection; 6.2.1 Branch-and-bound; 6.2.2 Suboptimal search; 6.2.3 Implementation issues; 6.3 Linear feature extraction; 6.3.1 Feature extraction based on the Bhattacharyya distance with Gaussian distributions; 6.3.2 Feature extraction based on inter/intra class distance; 6.4 References; 6.5 Exercises; 7 Unsupervised Learning; 7.1 Feature reduction; 7.1.1 Principal component analysis
  • 7.1.2 Multi-dimensional scaling
Dimensions
unknown
Extent
1 online resource (441 p.)
Form of item
online
Isbn
9781601194961
Media category
computer
Media type code
c
Specific material designation
remote
System control number
  • (CKB)1000000000356580
  • (EBL)232696
  • (OCoLC)475938791
  • (SSID)ssj0000071581
  • (PQKBManifestationID)11107242
  • (PQKBTitleCode)TC0000071581
  • (PQKBWorkID)10091241
  • (PQKB)10032024
  • (MiAaPQ)EBC232696
  • (EXLCZ)991000000000356580
Label
Classification, parameter estimation, and state estimation : an engineering approach using MATLAB, F. van der Heijden ... [et al.], (electronic resource)
Publication
Note
Description based upon print version of record
Bibliography note
Includes bibliographical references and index
Carrier category
online resource
Carrier category code
cr
Content category
text
Content type code
txt
Contents
  • Classification, Parameter Estimation and State Estimation; Contents; Preface; Foreword; 1 Introduction; 1.1 The scope of the book; 1.1.1 Classification; 1.1.2 Parameter estimation; 1.1.3 State estimation; 1.1.4 Relations between the subjects; 1.2 Engineering; 1.3 The organization of the book; 1.4 References; 2 Detection and Classification; 2.1 Bayesian classification; 2.1.1 Uniform cost function and minimum error rate; 2.1.2 Normal distributed measurements; linear and quadratic classifiers; 2.2 Rejection; 2.2.1 Minimum error rate classification with reject option
  • 2.3 Detection: the two-class case2.4 Selected bibliography; 2.5 Exercises; 3 Parameter Estimation; 3.1 Bayesian estimation; 3.1.1 MMSE estimation; 3.1.2 MAP estimation; 3.1.3 The Gaussian case with linear sensors; 3.1.4 Maximum likelihood estimation; 3.1.5 Unbiased linear MMSE estimation; 3.2 Performance of estimators; 3.2.1 Bias and covariance; 3.2.2 The error covariance of the unbiased linear MMSE estimator; 3.3 Data fitting; 3.3.1 Least squares fitting; 3.3.2 Fitting using a robust error norm; 3.3.3 Regression; 3.4 Overview of the family of estimators; 3.5 Selected bibliography
  • 3.6 Exercises4 State Estimation; 4.1 A general framework for online estimation; 4.1.1 Models; 4.1.2 Optimal online estimation; 4.2 Continuous state variables; 4.2.1 Optimal online estimation in linear-Gaussian systems; 4.2.2 Suboptimal solutions for nonlinear systems; 4.2.3 Other filters for nonlinear systems; 4.3 Discrete state variables; 4.3.1 Hidden Markov models; 4.3.2 Online state estimation; 4.3.3 Offline state estimation; 4.4 Mixed states and the particle filter; 4.4.1 Importance sampling; 4.4.2 Resampling by selection; 4.4.3 The condensation algorithm; 4.5 Selected bibliography
  • 4.6 Exercises5 Supervised Learning; 5.1 Training sets; 5.2 Parametric learning; 5.2.1 Gaussian distribution, mean unknown; 5.2.2 Gaussian distribution, covariance matrix unknown; 5.2.3 Gaussian distribution, mean and covariance matrix both unknown; 5.2.4 Estimation of the prior probabilities; 5.2.5 Binary measurements; 5.3 Nonparametric learning; 5.3.1 Parzen estimation and histogramming; 5.3.2 Nearest neighbour classification; 5.3.3 Linear discriminant functions; 5.3.4 The support vector classifier; 5.3.5 The feed-forward neural network; 5.4 Empirical evaluation; 5.5 References
  • 5.6 Exercises6 Feature Extraction and Selection; 6.1 Criteria for selection and extraction; 6.1.1 Inter/intra class distance; 6.1.2 Chernoff-Bhattacharyya distance; 6.1.3 Other criteria; 6.2 Feature selection; 6.2.1 Branch-and-bound; 6.2.2 Suboptimal search; 6.2.3 Implementation issues; 6.3 Linear feature extraction; 6.3.1 Feature extraction based on the Bhattacharyya distance with Gaussian distributions; 6.3.2 Feature extraction based on inter/intra class distance; 6.4 References; 6.5 Exercises; 7 Unsupervised Learning; 7.1 Feature reduction; 7.1.1 Principal component analysis
  • 7.1.2 Multi-dimensional scaling
Dimensions
unknown
Extent
1 online resource (441 p.)
Form of item
online
Isbn
9781601194961
Media category
computer
Media type code
c
Specific material designation
remote
System control number
  • (CKB)1000000000356580
  • (EBL)232696
  • (OCoLC)475938791
  • (SSID)ssj0000071581
  • (PQKBManifestationID)11107242
  • (PQKBTitleCode)TC0000071581
  • (PQKBWorkID)10091241
  • (PQKB)10032024
  • (MiAaPQ)EBC232696
  • (EXLCZ)991000000000356580

Library Locations

  • Architecture LibraryBorrow it
    Gould Hall 830 Van Vleet Oval Rm. 105, Norman, OK, 73019, US
    35.205706 -97.445050
  • Bizzell Memorial LibraryBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Boorstin CollectionBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Chinese Literature Translation ArchiveBorrow it
    401 W. Brooks St., RM 414, Norman, OK, 73019, US
    35.207487 -97.447906
  • Engineering LibraryBorrow it
    Felgar Hall 865 Asp Avenue, Rm. 222, Norman, OK, 73019, US
    35.205706 -97.445050
  • Fine Arts LibraryBorrow it
    Catlett Music Center 500 West Boyd Street, Rm. 20, Norman, OK, 73019, US
    35.210371 -97.448244
  • Harry W. Bass Business History CollectionBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • History of Science CollectionsBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • John and Mary Nichols Rare Books and Special CollectionsBorrow it
    401 W. Brooks St., Rm. 509NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • Library Service CenterBorrow it
    2601 Technology Place, Norman, OK, 73019, US
    35.185561 -97.398361
  • Price College Digital LibraryBorrow it
    Adams Hall 102 307 West Brooks St., Norman, OK, 73019, US
    35.210371 -97.448244
  • Western History CollectionsBorrow it
    Monnet Hall 630 Parrington Oval, Rm. 300, Norman, OK, 73019, US
    35.209584 -97.445414
Processing Feedback ...