The Resource Best practice guide on sampling and monitoring of metals in drinking water, edited by Dr. Adam Postawa

Best practice guide on sampling and monitoring of metals in drinking water, edited by Dr. Adam Postawa

Label
Best practice guide on sampling and monitoring of metals in drinking water
Title
Best practice guide on sampling and monitoring of metals in drinking water
Statement of responsibility
edited by Dr. Adam Postawa
Title variation
Best practice guide on sampling & monitoring of metals in drinking water
Contributor
Subject
Language
eng
Summary
"There is increasing concern regarding the presence of metals, particularly heavy metals in drinking water. In addition to the well-known toxic effects of lead, which are discussed at length in the Best Practice Guide on the Control of Lead in Drinking Water (in this series of Guides), the latest WHO guide values for maximum mean concentrations of arsenic, nickel and others in drinking water have been lowered compared to previous versions. European Union, USA and National standards for drinking water have followed the trend based largely on the same toxicological information. There is currently growing interest in the presence of hexavalent chromium in drinking water following its finding in some drinking waters in the USA above the national upper limit for total chromium and research suggesting that this limit needs to be considerably lowered. Some metals, particularly iron and manganese are associated with the production of discoloured (dirty) water in distribution systems and are therefore very important to the production of water with acceptable aesthetic qualities. Others (iron and aluminium) are key to the treatment of raw waters to drinking water standards. In most cases it is not possible to continuously monitor waters for metals and suitable sampling programmes must be designed and carried out to give results representative of the true water quality. The Best Practice Guide on Sampling and Monitoring of Metals in Drinking Water gives guidance on the design and quality control of sampling programmes for metals in raw waters, in the water treatment works, in the drinking water distribution system and at the consumer's tap. It also gives guidance on the analytical methods that can be used for the analysis of metals and quality control of those methods. Sampling programmes on the same water will vary according to the purpose for which they are carried out and the statistical techniques used to determine and design the different types of programme are outlined. Finally some case studies of optimisation of sampling are set out. Best Practice Guide on Sampling and Monitoring of Metals in Drinking Water is a valuable text for Scientists, Engineers and Quality Managers working in Drinking Water Supply, Laboratory Managers and Scientists who carry out Sampling and Analysis, and Water Industry Consultants. It is also an excellent resource for Post Graduate and Research workers in the field of Drinking water"--P. [4] of cover
Member of
Cataloging source
TSU
Illustrations
  • illustrations
  • charts
Index
no index present
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorName
  • Postawa, Adam
  • IWA Publishing
Series statement
Metals and related substances in drinking water series
http://library.link/vocab/subjectName
  • Water
  • Drinking water
  • Water-supply
  • Water resources development
  • Water utilities
Label
Best practice guide on sampling and monitoring of metals in drinking water, edited by Dr. Adam Postawa
Instantiates
Publication
Bibliography note
Includes bibliographical references (p. [125]-130)
Contents
Machine generated contents note: 1.1. The Scope of the Best Practice Guide -- 1.2. The Role of Sampling and Monitoring -- 1.3. Drinking Water Safety Planning -- 1.4. The Potential Consequences of Poor Sampling and Monitoring -- 1.5. Layout of the Best Practice Guide -- 2.1. Health and Safety -- 2.2. Design of Sampling Programmes -- 2.3. Sampling Techniques -- 2.4. Sampling Equipment -- 2.5. Sample Pretreatment and Preservation -- 3.1. Role of Quality Assurance -- 3.2. Sampling Strategy -- 3.3. Validation of Sampling Procedure -- 3.4. Quality Control Programme -- 4.1. Selection of an Analytical Method -- 4.2. Colorimetric Methods -- 4.3. Electrochemistry Methods -- 4.4. Atomic Absorption Spectroscopy Methods -- 4.5. Inductively Coupled Plasma Methods (ICP) -- 5.1. Performance Characteristics -- 5.2. Internal Quality Control -- 5.3. External Quality Control -- 5.4. Example of an Analytical Quality Control Program -- 6.1. What is Raw Water? -- 6.2. Reasons for Monitoring Raw Water -- 6.3. Types of Samples -- 6.4. Sampling Locations -- 6.5. Sampling Frequency -- 6.6. Sampling Devices -- 6.7. Automatic Sampling and Online Analysis Systems -- 6.8. Passive Sampling -- 7.1. Metals Significant for Water Treatment -- 7.2. Reasons for Monitoring -- 7.3. Monitoring Locations -- 7.4. Methods of Monitoring -- 7.5. Interpretation of Data -- 8.1. Metals Causing Problems in Distribution Systems -- 8.2. Reasons for Monitoring -- 8.3. Planning a Sample Survey -- 8.4. Monitoring Locations -- 8.5. Methods of Monitoring -- 8.6. Interpretation of Data -- 9.1. Relevance of Consumer's Tap -- 9.2. Sampling Methods -- 9.3. Zonal Monitoring -- 9.4. Investigations at Individual Properties -- 10.1. Basic Definitions -- 10.2. Selected Parametric and Nonparametric Statistical Tests -- 10.3. Confidence Interval for Mean -- 10.4.Compliance with Thresholds -- 10.5. Anova and Robust Anova -- 10.6. Data Presentation -- 11.1. Source to Tap Overview -- 11.2. Reasons for Monitoring -- 11.3. Consequences of Inadequate Monitoring Data -- 11.4. Steps to Developing a Successful Monitoring Strategy -- A1.1. Bucharest (RO) -- A1.2. England and Wales (UK) -- A1.3. Krakow (PL) -- A1.4. Myszkow (PL) -- A1.5. Targu Mures (RO) -- A1.6. Timisoara (RO)
Dimensions
25 cm.
Extent
xxiii, 130 p.
Isbn
9781843393832
Other physical details
ill.
System control number
  • 4060793-01okla_normanlaw
  • (SIRSI)4060793
  • (Sirsi) o777591155
  • (OCoLC)777591155
Label
Best practice guide on sampling and monitoring of metals in drinking water, edited by Dr. Adam Postawa
Publication
Bibliography note
Includes bibliographical references (p. [125]-130)
Contents
Machine generated contents note: 1.1. The Scope of the Best Practice Guide -- 1.2. The Role of Sampling and Monitoring -- 1.3. Drinking Water Safety Planning -- 1.4. The Potential Consequences of Poor Sampling and Monitoring -- 1.5. Layout of the Best Practice Guide -- 2.1. Health and Safety -- 2.2. Design of Sampling Programmes -- 2.3. Sampling Techniques -- 2.4. Sampling Equipment -- 2.5. Sample Pretreatment and Preservation -- 3.1. Role of Quality Assurance -- 3.2. Sampling Strategy -- 3.3. Validation of Sampling Procedure -- 3.4. Quality Control Programme -- 4.1. Selection of an Analytical Method -- 4.2. Colorimetric Methods -- 4.3. Electrochemistry Methods -- 4.4. Atomic Absorption Spectroscopy Methods -- 4.5. Inductively Coupled Plasma Methods (ICP) -- 5.1. Performance Characteristics -- 5.2. Internal Quality Control -- 5.3. External Quality Control -- 5.4. Example of an Analytical Quality Control Program -- 6.1. What is Raw Water? -- 6.2. Reasons for Monitoring Raw Water -- 6.3. Types of Samples -- 6.4. Sampling Locations -- 6.5. Sampling Frequency -- 6.6. Sampling Devices -- 6.7. Automatic Sampling and Online Analysis Systems -- 6.8. Passive Sampling -- 7.1. Metals Significant for Water Treatment -- 7.2. Reasons for Monitoring -- 7.3. Monitoring Locations -- 7.4. Methods of Monitoring -- 7.5. Interpretation of Data -- 8.1. Metals Causing Problems in Distribution Systems -- 8.2. Reasons for Monitoring -- 8.3. Planning a Sample Survey -- 8.4. Monitoring Locations -- 8.5. Methods of Monitoring -- 8.6. Interpretation of Data -- 9.1. Relevance of Consumer's Tap -- 9.2. Sampling Methods -- 9.3. Zonal Monitoring -- 9.4. Investigations at Individual Properties -- 10.1. Basic Definitions -- 10.2. Selected Parametric and Nonparametric Statistical Tests -- 10.3. Confidence Interval for Mean -- 10.4.Compliance with Thresholds -- 10.5. Anova and Robust Anova -- 10.6. Data Presentation -- 11.1. Source to Tap Overview -- 11.2. Reasons for Monitoring -- 11.3. Consequences of Inadequate Monitoring Data -- 11.4. Steps to Developing a Successful Monitoring Strategy -- A1.1. Bucharest (RO) -- A1.2. England and Wales (UK) -- A1.3. Krakow (PL) -- A1.4. Myszkow (PL) -- A1.5. Targu Mures (RO) -- A1.6. Timisoara (RO)
Dimensions
25 cm.
Extent
xxiii, 130 p.
Isbn
9781843393832
Other physical details
ill.
System control number
  • 4060793-01okla_normanlaw
  • (SIRSI)4060793
  • (Sirsi) o777591155
  • (OCoLC)777591155

Library Locations

  • Architecture LibraryBorrow it
    Gould Hall 830 Van Vleet Oval Rm. 105, Norman, OK, 73019, US
    35.205706 -97.445050
  • Bizzell Memorial LibraryBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Boorstin CollectionBorrow it
    401 W. Brooks St., Norman, OK, 73019, US
    35.207487 -97.447906
  • Chinese Literature Translation ArchiveBorrow it
    401 W. Brooks St., RM 414, Norman, OK, 73019, US
    35.207487 -97.447906
  • Engineering LibraryBorrow it
    Felgar Hall 865 Asp Avenue, Rm. 222, Norman, OK, 73019, US
    35.205706 -97.445050
  • Fine Arts LibraryBorrow it
    Catlett Music Center 500 West Boyd Street, Rm. 20, Norman, OK, 73019, US
    35.210371 -97.448244
  • Harry W. Bass Business History CollectionBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • History of Science CollectionsBorrow it
    401 W. Brooks St., Rm. 521NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • John and Mary Nichols Rare Books and Special CollectionsBorrow it
    401 W. Brooks St., Rm. 509NW, Norman, OK, 73019, US
    35.207487 -97.447906
  • Library Service CenterBorrow it
    2601 Technology Place, Norman, OK, 73019, US
    35.185561 -97.398361
  • Price College Digital LibraryBorrow it
    Adams Hall 102 307 West Brooks St., Norman, OK, 73019, US
    35.210371 -97.448244
  • Western History CollectionsBorrow it
    Monnet Hall 630 Parrington Oval, Rm. 300, Norman, OK, 73019, US
    35.209584 -97.445414
Processing Feedback ...